1
|
Lin G, Lue TF. Microenergy shockwave therapies for female stress urinary incontinence. Transl Androl Urol 2024; 13:1687-1694. [PMID: 39280672 PMCID: PMC11399057 DOI: 10.21037/tau-23-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/08/2023] [Indexed: 09/18/2024] Open
Abstract
Stress urinary incontinence (SUI) is one of the pelvic floor disorders affecting tens of million of women worldwide. In general, non-surgical options have relatively limited efficacy. The most effective treatment is mid-urethral sling surgery which carries substantial risks of perioperative and postoperative complications. Regenerative therapy with the injection of several types of stem cells and stem cell products is promising but further investigation is needed before clinical implementation can be considered. In recent years, the application of microenergy therapy as a non-invasive treatment for SUI has received increasing attention. Preclinical animal studies of these models have demonstrated that low-intensity extracorporeal shockwave therapy (Li-ESWT) and microenergy acoustic pulse (MAP) therapy are capable of regenerating urethral sphincter tissue and pelvic floor muscles leading to improved urinary continence. One pilot clinical trial with Li-ESWT also reported improved quality of life in women with SUI as well as the symptoms. The objective of this review is to summarize the potential mechanisms associated with Li-ESWT and MAP therapies of SUI: (I) activation of tissue-resident stem cells; (II) regeneration of musculature in the urethra and pelvic floor; (III) improvement in biomechanical property of pelvic floor muscles; (IV) modulation of cellular signaling pathways. Further studies of the molecular mechanisms, optimal treatment dosage and schedule, and potential long-term side effects are needed to provide this non-invasive regenerative therapy for millions of women with SUI.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Erdogan BR, Liu G, Arioglu-Inan E, Michel MC. Established and emerging treatments for diabetes-associated lower urinary tract dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:887-906. [PMID: 35545721 PMCID: PMC9276575 DOI: 10.1007/s00210-022-02249-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction of the lower urinary tract (LUT) including urinary bladder and urethra (and prostate in men) is one of the most frequent complications of diabetes and can manifest as overactive bladder, underactive bladder, urinary incontinence, and as aggravated symptoms of benign prostate hyperplasia. We have performed a selective literature search to review existing evidence on efficacy of classic medications for the treatment of LUT dysfunction in diabetic patients and animals, i.e., α1-adrenoceptor and muscarinic receptor antagonists, β3-adrenoceptor agonists, and phosphodiesterase type 5 inhibitors. Generally, these agents appear to have comparable efficacy in patients and/or animals with and without diabetes. We also review effects of antidiabetic medications on LUT function. Such studies have largely been performed in animal models. In the streptozotocin-induced models of type 1 diabetes, insulin can prevent and reverse alterations of morphology, function, and gene expression patterns in bladder and prostate. Typical medications for the treatment of type 2 diabetes have been studied less often, and the reported findings are not yet sufficient to derive robust conclusions. Thereafter, we review animal studies with emerging medications perhaps targeting diabetes-associated LUT dysfunction. Data with myoinositol, daidzein, and with compounds that target oxidative stress, inflammation, Rac1, nerve growth factor, angiotensin II receptor, serotonin receptor, adenosine receptor, and soluble guanylyl cyclase are not conclusive yet, but some hold promise as potential treatments. Finally, we review nonpharmacological interventions in diabetic bladder dysfunction. These approaches are relatively new and give promising results in preclinical studies. In conclusion, the insulin data in rodent models of type 1 diabetes suggest that diabetes-associated LUT function can be mostly or partially reversed. However, we propose that considerable additional experimental and clinical studies are needed to target diabetes itself or pathophysiological changes induced by chronic hyperglycemia for the treatment of diabetic uropathy.
Collapse
Affiliation(s)
- Betül R Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
De La Torre P, Pérez-Lorenzo MJ, Alcázar-Garrido Á, Collado J, Martínez-López M, Forcén L, Masero-Casasola AR, García A, Gutiérrez-Vélez MC, Medina-Polo J, Muñoz E, Flores AI. Perinatal mesenchymal stromal cells of the human decidua restore continence in rats with stress urinary incontinence induced by simulated birth trauma and regulate senescence of fibroblasts from women with stress urinary incontinence. Front Cell Dev Biol 2022; 10:1033080. [PMID: 36742196 PMCID: PMC9893794 DOI: 10.3389/fcell.2022.1033080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Stress urinary incontinence (SUI) is a condition that causes the involuntary loss of urine when making small efforts, which seriously affects daily life of people who suffer from it. Women are more affected by this form of incontinence than men, since parity is the main risk factor. Weakening of the pelvic floor tissues is the cause of SUI, although a complete understanding of the cellular and molecular mechanisms of the pathology is still lacking. Reconstructive surgery to strengthen tissue in SUI patients is often associated with complications and/or is ineffective. Mesenchymal stromal cells from the maternal side of the placenta, i.e. the decidua, are proposed here as a therapeutic alternative based on the regenerative potential of mesenchymal cells. The animal model of SUI due to vaginal distention simulating labor has been used, and decidual mesenchymal stromal cell (DMSC) transplantation was effective in preventing a drop in pressure at the leak point in treated animals. Histological analysis of the urethras from DMSC-treated animals after VD showed recovery of the muscle fiber integrity, low or no extracellular matrix (ECM) infiltration and larger elastic fibers near the external urethral sphincter, compared to control animals. Cells isolated from the suburethral connective tissue of SUI patients were characterized as myofibroblasts, based on the expression of several specific genes and proteins, and were shown to achieve premature replicative senescence. Co-culture of SUI myofibroblasts with DMSC via transwell revealed a paracrine interaction between the cells through signals that mediated DMSC migration, SUI myofibroblast proliferation, and modulation of the proinflammatory and ECM-degrading milieu that is characteristic of senescence. In conclusion, DMSC could be an alternative therapeutic option for SUI by counteracting the effects of senescence in damaged pelvic tissue.
Collapse
Affiliation(s)
- Paz De La Torre
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Álvaro Alcázar-Garrido
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jennifer Collado
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Laura Forcén
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana R. Masero-Casasola
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alicia García
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mª Carmen Gutiérrez-Vélez
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Medina-Polo
- Male’s Integral Health Group, Urology Department, Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eloy Muñoz
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana I. Flores
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Ana I. Flores,
| |
Collapse
|
5
|
Is minimally invasive liver surgery a reasonable option in recurrent HCC? A snapshot from the I Go MILS registry. Updates Surg 2021; 74:87-96. [PMID: 34601669 DOI: 10.1007/s13304-021-01161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
Laparoscopic liver resection (LLR) for Hepatocellular carcinoma (HCC) is a safe procedure. Repeat surgery is more often required, and the role of minimally invasive liver surgery (MILS) is not yet clearly defined. The present study analyzes data compiled by the Italian Group of Minimally Invasive Liver Surgery (IGoMILS) on LLR. To compare repeated LLR with the first LLR for HCC is the primary endpoint. The secondary endpoint was to evaluate the outcome of repeat LLR in the case of primary open versus primary MILS surgery. The data cohort is divided into two groups. Group 1: first liver resection and Group 2: Repeat LLR. To compare the two groups a 3:1 Propensity Score Matching is performed to analyze open versus MILS primary resection. Fifty-two centers were involved in the present study, and 1054 patients were enrolled. 80 patients underwent to a repeat LLR. The type of resection was different, with more major resections in the group 1 before matching the two groups. After propensity score matching 3:1, each group consisted of 222 and 74 patients. No difference between the two groups was observed. In the subgroup analysis, in 44 patients the first resection was performed by an open approach. The other 36 patients were resected with a MILS approach. We found no difference between these two subgroups of patients. The present study in repeat MILS for HCC using the IGoMILS Registry has observed the feasibility and safety of the MILS procedure.
Collapse
|