1
|
Shima S, Mizutani Y, Yoshimoto J, Maeda Y, Ohdake R, Nagao R, Maeda T, Higashi A, Ueda A, Ito M, Mutoh T, Watanabe H. Uric acid and alterations of purine recycling disorders in Parkinson's disease: a cross-sectional study. NPJ Parkinsons Dis 2024; 10:170. [PMID: 39251680 PMCID: PMC11385569 DOI: 10.1038/s41531-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
The relationship between reduced serum uric acid (UA) levels and Parkinson's disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (p < 0.0001; effect size r = 0.5007 in serum, p = 0.0046; r = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (p = 0.0002; r = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (p < 0.0001, r = 0.5396: p = 0.0276, r = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Fujita Health University Central Japan International Airport Clinic, 1-1 Centrair, Tokoname, Aichi, 479-0881, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
2
|
Zhai RX, Yu H, Ma H, Liu TT, Zhong P. Progression of cognitive impairment in Parkinson's disease correlates with uric acid concentration. Front Neurol 2024; 15:1378334. [PMID: 38872819 PMCID: PMC11169608 DOI: 10.3389/fneur.2024.1378334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction This study assessed the relationship between the progression of Parkinson's disease (PD) with cognitive impairment and changes in serum uric acid (UA) and homocysteine (Hcy) concentrations and explored the factors influencing PD with cognitive impairment. Methods The study randomly selected 74 patients with PD and evaluated their cognitive function using the Montreal Cognitive Assessment Scale (MoCA). Patients with PD were divided into two subgroups: those with and without cognitive impairment. PD severity was evaluated and graded using the Hoehn and Yahr (H-Y) scale. Another 60 middle-aged and older individuals without PD during the same period were selected as a control group. Blood UA and Hcy concentrations in each group were measured to assess the relationship between PD, cognitive impairment, and changes in UA and Hcy concentrations. Results The PD group with cognitive impairment had a lower UA concentration and higher Hcy concentration. The UA concentration was significantly higher in the early PD stages than in the middle and late stages (P<0.05). A significant negative relationship between MoCA scores and serum UA levels was found in patients with PD, whereas a positive relationship existed between MoCA scores and serum Hcy concentrations. Regression analysis showed that a higher UA concentration was an independent protective factor for PD with cognitive impairment, while a higher Hcy concentration was a risk factor (P<0.05). A serum UA concentration of 212.9 mmol/L and Hcy concentration of 13.35 mmol/L could distinguish between patients with PD with or without cognitive impairment with a sensitivity of 93.2% and specificity of 43.3%. Conclusion PD and cognitive impairment were associated with a decrease in UA concentration; the later the H-Y stage was, the lower the UA concentration was. The increase in Hcy concentration was related to PD and its cognitive impairment, whereas it is not significantly correlated with PD progression.
Collapse
Affiliation(s)
- Rui-Xue Zhai
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China
| | | | | | | | - Ping Zhong
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China
| |
Collapse
|
3
|
Constantin IM, Voruz P, Péron JA. Moderating effects of uric acid and sex on cognition and psychiatric symptoms in asymmetric Parkinson's disease. Biol Sex Differ 2023; 14:26. [PMID: 37143121 PMCID: PMC10157998 DOI: 10.1186/s13293-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Non-motor symptoms are an important early feature of Parkinson's disease (PD), encompassing a variety of cognitive and psychiatric symptoms that seem to manifest differently depending on motor symptom asymmetry. Different factors, such as uric acid (UA) and sex, seem to influence cognitive and psychiatric expression in PD, however their interplay remains to be better understood. METHODS Participants taking part in the Parkinson's Progression Marker Initiative were studied based on the side of motor symptom asymmetry and sex. Three-way interaction modeling was used to examine the moderating effects of sex and UA on cognitive functions and psychiatric symptoms. RESULTS Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymmetry, UA and sex for immediate and long-term memory in female patients exhibiting predominantly left-sided motor symptoms, and for processing speed and sleepiness in female patients exhibiting predominantly right-sided motor symptoms. No significant interactions were observed for male patients. Moreover, female patients exhibiting predominantly right-sided motor symptoms demonstrated lower serum UA concentrations and had overall better outcomes, while male patients with predominantly right-sided motor symptoms demonstrated particularly poor outcomes. CONCLUSIONS These findings suggest that in the earliest stages of the disease, UA and sex moderate cognitive functions and psychiatric symptoms differently depending on motor asymmetry, holding important clinical implications for symptom management in patients.
Collapse
Affiliation(s)
- Ioana Medeleine Constantin
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland.
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland.
| |
Collapse
|
4
|
Hasíková L, Závada J, Serranová T, Kozlík P, Kalíková K, Kotačková L, Trnka J, Zogala D, Šonka K, Růžička E, Dušek P. Serum but not cerebrospinal fluid levels of allantoin are increased in de novo Parkinson's disease. NPJ Parkinsons Dis 2023; 9:60. [PMID: 37045835 PMCID: PMC10097817 DOI: 10.1038/s41531-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress supposedly plays a role in the pathogenesis of Parkinson's disease (PD). Uric acid (UA), a powerful antioxidant, is lowered in PD while allantoin, the oxidation product of UA and known biomarker of oxidative stress, was not systematically studied in PD. We aim to compare serum and cerebrospinal fluid (CSF) levels of UA, allantoin, and allantoin/UA ratio in de novo PD patients and controls, and evaluate their associations with clinical severity and the degree of substantia nigra degeneration in PD. We measured serum and CSF levels of UA, allantoin, and allantoin/UA ratio in 86 PD patients (33 females, mean age 57.9 (SD 12.6) years; CSF levels were assessed in 51 patients) and in 40 controls (19 females, 56.7 (14.1) years). PD patients were examined using Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Montreal Cognitive Assessment (MoCA), Scales for Outcomes in Parkinson Disease-Autonomic (SCOPA-AUT), the University of Pennsylvania Smell Identification Test (UPSIT), one-night video-polysomnography, and dopamine transporter single-photon emission computed tomography (DAT-SPECT). Serum allantoin and allantoin/UA ratio were significantly increased in the PD group compared to controls (p < 0.001 and p = 0.002, respectively). Allantoin/UA ratios in serum and CSF were positively associated with the SCOPA-AUT score (p = 0.005 and 0.031, respectively) and RBD presence (p = 0.044 and 0.028, respectively). In conclusion, serum allantoin and allantoin/UA ratio are elevated in patients with de novo PD. Allantoin/UA ratio in serum and CSF is associated with autonomic dysfunction and RBD presence, indicating that higher systemic oxidative stress occurs in PD patients with more diffuse neurodegenerative changes.
Collapse
Affiliation(s)
- Lenka Hasíková
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Závada
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Serranová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Kotačková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
5
|
Koros C, Simitsi AM, Papagiannakis N, Bougea A, Prentakis A, Papadimitriou D, Pachi I, Beratis I, Stanitsa E, Angelopoulou E, Antonelou R, Bregianni M, Lourentzos K, Papageorgiou SG, Bonakis A, Trapali XG, Stamelou M, Stefanis L. Serum Uric Acid as a Putative Biomarker in Prodromal Parkinson's Disease: Longitudinal Data from the PPMI Study. JOURNAL OF PARKINSON'S DISEASE 2023; 13:811-818. [PMID: 37424476 PMCID: PMC10473106 DOI: 10.3233/jpd-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The role of blood uric acid as a biomarker in symptomatic motor PD has been increasingly established in the literature. OBJECTIVE Our present study assessed the role of serum uric acid as a putative biomarker in a prodromal PD cohort [REM Sleep Behavior disorder (RBD) and Hyposmia] followed longitudinally. METHODS Longitudinal 5-year serum uric acid measurement data of 39 RBD patients and 26 Hyposmia patients with an abnormal DATSCAN imaging were downloaded from the Parkinson's Progression Markers Initiative database. These cohorts were compared with 423 de novo PD patients and 196 healthy controls enrolled in the same study. RESULTS After adjusting for age, sex, body mass index, and concomitant disorders (hypertension/gout), baseline and longitudinal serum uric acid levels were higher in the RBD subgroup as compared to the established PD cohort (p = 0.004 and p = 0.001). (Baseline RBD 6.07±1.6 vs. Baseline PD 5.35±1.3 mg/dL and Year-5 RBD 5.7±1.3 vs. Year-5 PD 5.26±1.33). This was also true for longitudinal measurements in the Hyposmic subgroup (p = 0.008) (Baseline Hyposmic 5.7±1.6 vs. PD 5.35±1.3 mg/dL and Year-5 Hyposmic 5.58±1.6 vs. PD 5.26±1.33). CONCLUSION Our results indicate that serum uric acid levels are higher in prodromal PD subjects with ongoing dopaminergic degeneration compared to those with manifest PD. These data indicate that the well-established decrease in the levels of serum uric acid occurs with the transition from prodromal to clinical PD. Whether the higher levels of serum uric acid observed in prodromal PD may provide protection against conversion to full-blown clinical PD will require further study.
Collapse
Affiliation(s)
- Christos Koros
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina-Maria Simitsi
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Bougea
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Prentakis
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Nuclear Medicine Unit, Attikon Hospital, Athens, Greece
| | | | - Ioanna Pachi
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ion Beratis
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Stanitsa
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubina Antonelou
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Bregianni
- 2 Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Lourentzos
- 2 Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis G. Papageorgiou
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Bonakis
- 2 Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Stamelou
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Neurology Clinic, Philipps University, Marburg, Germany
- Parkinsons disease and Movement Disorders Dept., HYGEIA Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1 Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Seifar F, Dinasarapu AR, Jinnah HA. Uric Acid in Parkinson's Disease: What Is the Connection? Mov Disord 2022; 37:2173-2183. [PMID: 36056888 PMCID: PMC9669180 DOI: 10.1002/mds.29209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Numerous studies have linked Parkinson's disease (PD) with low levels of uric acid (UA). Low UA has been associated with the risk of developing PD, and its progression and severity. The biological mechanisms underlying these relationships have never been firmly established. The most frequently proposed mechanism is that UA is an antioxidant. Low UA is thought to predispose to oxidative stress, which contributes to dopamine neuron degeneration, and leads to initial appearance of symptoms of PD and its worsening over time. Several recent studies have questioned this explanation. In this review, we describe the biology of UA, its many links with PD, evidence regarding UA as an antioxidant, and we question whether UA causes PD or contributes to its progression. We also address the possibility that something about PD causes low UA (reverse causation) or that low UA is a biomarker of some other more relevant mechanism in PD. We hope the evidence provided here will stimulate additional studies to better understand the links between UA and PD. Elucidating these mechanisms remains important, because they may provide new insights into the pathogenesis of PD or novel approaches to treatments. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fatemeh Seifar
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta GA, USA
- Department of Neurology, Emory University, Atlanta GA, USA
| | | | - H. A. Jinnah
- Department of Neurology, Emory University, Atlanta GA, USA
- Department of Human Genetics, Emory University, Atlanta GA, USA
- Department of Pediatrics, Emory University, Atlanta GA, USA
| |
Collapse
|
7
|
Fazlollahi A, Zahmatyar M, Alizadeh H, Noori M, Jafari N, Nejadghaderi SA, Sullman MJM, Gharagozli K, Kolahi AA, Safiri S. Association between gout and the development of Parkinson's disease: a systematic review and meta-analysis. BMC Neurol 2022; 22:383. [PMID: 36221048 PMCID: PMC9552480 DOI: 10.1186/s12883-022-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND As a natural antioxidant, uric acid plays a protective role against neurodegenerative disorders, including Parkinson's disease (PD). Therefore, the risk of PD has been found to be lower in people with hyperuricemia. In this article, we conducted a systematic review and meta-analysis to investigate whether gout affects the future risk of developing PD. METHODS We searched PubMed, Scopus, the Web of Science, and Google Scholar to find relevant studies, up to March 16, 2022. Studies investigating the risk of PD, following a gout diagnosis, were included if they were cross-sectional, case-control or cohort studies. The Newcastle Ottawa Scale (NOS) checklist was used to assess the quality of all included studies. The meta-analysis was performed using STATA 17.0. RESULTS Ten studies were included, which were comprised of three case-controls, six cohort studies and one nested case-control study. We found no significant association between gout and the risk of PD among both sexes (RR = 0.94, 95% CI: 0.86-1.04), although the association was significant for females (RR = 1.09; 95% CI: 1.02-1.17). Subgroup analysis also showed no significant findings by age group, whether they were receiving treatment for gout, study design, quality assessment score, and method of gout ascertainment. In contrast, the studies that defined PD according to the use of drugs showed significant results (RR = 0.82; 95% CI: 0.76-0.89). There was a significant publication bias on the association between gout and PD. CONCLUSIONS The presence of gout had no significant effect on the risk of subsequently developing PD. Further analyses are recommended to investigate the effects of demographic and behavioral risk factors.
Collapse
Affiliation(s)
- Asra Fazlollahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Alizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Jafari
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Koroush Gharagozli
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Serum Uric Acid Levels in Parkinson’s Disease: A Cross-Sectional Electronic Medical Record Database Study from a Tertiary Referral Centre in Romania. Medicina (B Aires) 2022; 58:medicina58020245. [PMID: 35208569 PMCID: PMC8877142 DOI: 10.3390/medicina58020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Parkinson’s disease (PD) is a prevalent neurodegenerative condition responsible for progressive motor and non-motor symptoms. Currently, no prophylactic or disease-modifying interventions are available. Uric acid (UA) is a potent endogenous antioxidant, resulting from purine metabolism. It is responsible for about half of the antioxidant capacity of the plasma. Increasing evidence suggests that lower serum UA levels are associated with an increased risk of developing PD and with faster disease progression. Materials and Methods: We conducted an electronic medical record database study to investigate the associations between UA levels and different characteristics of PD. Results: Out of 274 datasets from distinct patients with PD, 49 complied with the predefined inclusion and exclusion criteria. Lower UA levels were significantly associated with the severity of parkinsonism according to the Hoehn and Yahr stage (rs = 0.488, p = 0.002), with the motor complications of long-term dopaminergic treatment (r = 0.333, p = 0.027), and with the presence of neurocognitive impairment (r = 0.346, p = 0.021). Conclusions: Oxidative stress is considered a key player in the etiopathogenesis of PD, therefore the involvement of lower UA levels in the development and progression of PD is plausible. Data on the potential therapeutic roles of elevating serum UA (e.g., by precursor administration or diet manipulation) are scarce, but considering the accumulating epidemiological evidence, the topic warrants further research.
Collapse
|