1
|
Mohamed RH, Abdel Hay NH, Fawzy NM, Tamim YM, Doaa Karem MM, Yehia DAY, Abdel Maksoud OM, Abdelrahim DS. Targeting mevalonate pathway by zoledronate ameliorated pulmonary fibrosis in a rat model: Promising therapy against post-COVID-19 pulmonary fibrosis. Fundam Clin Pharmacol 2024; 38:703-717. [PMID: 38357833 DOI: 10.1111/fcp.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Rho kinase (ROCK) pathway plays a critical role in post-COVID-19 pulmonary fibrosis (PCPF) and its intervention with angiotensin-converting enzyme 2 (ACE2) and vascular endothelial growth factor (VEGF) will be a potential therapeutic target. OBJECTIVES The present study was conducted to investigate the efficacy of zoledronate (ZA) on carbon tetrachloride (CCl4) induced pulmonary fibrosis (PF) in rats through targeting ACE2, ROCK, and VEGF signaling pathways. METHODS Fifty male Wistar rats were divided into five groups: control, vehicle-treated, PF, PF-ZA 50, and PF-ZA 100 groups. ZA was given in two different doses 100 and 50 μg/kg/week intraperitoneally. After anesthesia, mean arterial blood pressure (MBP) was measured. After scarification, lung coefficient was calculated. Lung levels of ACE 2, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), VEGF, glutathione (GSH), and superoxide dismutase (SOD) were measured. Expression of ROCK, phosphorylated myosin phosphatase target subunit 1 (P-MYPT1), and matrix metalloproteinase (MMP-1), along with histopathological changes and immune-histochemical staining for lung α-smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNFα), and caspase-3, were evaluated. RESULTS ZA significantly prevented the decrease in MBP. ZA significantly increased ACE2, GSH, and SOD and significantly decreased IL-1β, TGF-β, and VEGF in lung in comparison to PF group. ZA prevented the histopathological changes induced by CCl4. ZA inhibited lung expression of ROCK, P-MYPT1, MMP-1, α-SMA, TNFα, and caspase-3 with significant differences favoring the high dose intervention. CONCLUSION ZA in a dose-dependent manner prevented the pathological effect of CCl4 in the lung by targeting mevalonate pathway. It could be promising therapy against PCPF.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - M M Doaa Karem
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M Abdel Maksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology and Information University, Cairo, Egypt
| |
Collapse
|
2
|
Samaha MM, El-Desoky MM, Hisham FA. AdipoRon, an adiponectin receptor agonist, modulates AMPK signaling pathway and alleviates ovalbumin-induced airway inflammation in a murine model of asthma. Int Immunopharmacol 2024; 136:112395. [PMID: 38833845 DOI: 10.1016/j.intimp.2024.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Asthma is a long-term disease that causes airways swelling and inflammation and in turn airway narrowing. AdipoRonis an orally active synthetic small molecule that acts as a selective agonist at theadiponectin receptor 1 and 2. The aim of the current study is to delineate the protective effect and the potential underlying mechanism ofadipoRon inairway inflammationinduced byovalbumin (OVA) in comparison withdexamethasone. Adult maleSwiss Albino micewere sensitized to OVA on days 0 and 7, then challenged with OVA on days 14, 15 and 16. AdipoRon was administered orally for 6 days starting from the 11th day till the 16th and 1 h prior to OVA in the challenge days. Obtained results from asthmatic control group showed a significant decrease in serum adiponectin concentration, an increase in inflammatory cell counts inthe bronchoalveolar lavage fluid(BALF), CD68 protein expression, inflammatory cytokine concentration and oxidative stress as well. Administration of adipoRon enhanced antioxidant mechanisms limiting oxidative stress by significantly increasing reduced glutathione (GSH) pulmonary content, decreasing serum lactate dehydrogenase (LDH) together with malondialdehyde (MDA) significant reduction in lung tissue. In addition, it modulated the levels of serum immunoglobulin E (IgE), pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, nuclear factor kappa B (NF-κB) and the anti-inflammatory one IL-10 improving lung inflammation as revealed by histopathological evaluation. Furthermore, lung tissue expression of nuclear factor erythroid 2-related factor (Nrf2) and 5'AMP-activated protein kinase (AMPK) were significantly increased adipoRon. Notably, results of adipoRon received group were comparable to those of dexamethasone group. In conclusion, our study demonstrates that adipoRon can positively modulate adiponectin expression with activation of AMPK pathway and subsequent improvement in inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manal M El-Desoky
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma A Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Beitari S, Duque D, Bavananthasivam J, Hewitt M, Sandhu JK, Hadžisejdić I, Tran A. Cross protection to SARS-CoV-2 variants in hamsters with naturally-acquired immunity. Virol J 2023; 20:167. [PMID: 37507719 PMCID: PMC10386765 DOI: 10.1186/s12985-023-02136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Since SARS-CoV-2 was first reported in late 2019, multiple variations of the original virus have emerged. Each variant harbors accumulations of mutations, particularly within the spike glycoprotein, that are associated with increased viral transmissibility and escape immunity. The different mutations in the spike protein of different variants shape the subsequent antibody and T cell responses, such that exposure to different spike proteins can result in reduced or enhanced responses to heterologous variants further down the line. Globally, people have been exposed and re-exposed to multiple variations of the Ancestral strain, including the five variants of concerns. Studies have shown that the protective immune response of an individual is influenced by which strain or combination of strains they are exposed to. The initial exposure to a specific strain may also shape their subsequent immune patterns and response to later infections with a heterologous virus. Most immunological observations were carried out early during the pandemic when the Ancestral strain was circulating. However, SARS-CoV-2 variants exhibit varying patterns of disease severity, waning immunity, immune evasion and sensitivity to therapeutics. Here we investigated the cross-protection in hamsters previously infected with a variant of concern (VOC) and subsequently re-infected with a heterologous variant. We also determined if cross-protection and immunity were dependent on the specific virus to which the hamster was first exposed. We further profiled the host cytokine response induced by each SARS-CoV-2 variants as well as subsequent to re-infection. A comparative analysis of the three VOCs revealed that Alpha variant was the most pathogenic VOC to emerge. We showed that naturally acquired immunity protected hamsters from subsequent re-infection with heterologous SARS-CoV-2 variant, regardless which variant the animal was first exposed to. Our study supports observations that heterologous infection of different SARS-CoV-2 variants do not exacerbate disease in subsequent re-infections. The continual emergence of new SARS-CoV-2 variants mandates a better understanding of cross-protection and immune imprinting in infected individuals. Such information is essential to guide vaccine strategy and public policy to emerging SARS-CoV-2 VOCs and future novel pandemic coronaviruses.
Collapse
Affiliation(s)
- Saina Beitari
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Diana Duque
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jegarubee Bavananthasivam
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Melissa Hewitt
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jagdeep K Sandhu
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Ita Hadžisejdić
- Clinical Department of Pathology and Cytology, University of Rijeka, Rijeka, Croatia
| | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada.
| |
Collapse
|
4
|
Haslbauer JD, Savic Prince S, Stalder AK, Matter MS, Zinner CP, Jahn K, Obermann E, Hanke J, Leuzinger K, Hirsch HH, Tzankov A. Differential Gene Expression of SARS-CoV-2 Positive Bronchoalveolar Lavages: A Case Series. Pathobiology 2023; 91:158-168. [PMID: 37490884 PMCID: PMC10997241 DOI: 10.1159/000532057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Transcriptomic data on bronchoalveolar lavage (BAL) from COVID-19 patients are currently scarce. OBJECTIVES This case series seeks to characterize the intra-alveolar immunopathology of COVID-19. METHOD BALs were performed on 14 patients (5 COVID-19, of which 3 mild and 2 largely asymptomatic, 9 controls). Controls included asthma (n = 1), unremarkable BALs (n = 3), infections with respiratory syncytial virus (n = 1), influenza B (n = 1), and infections with other coronaviruses (n = 3). SARS-CoV-2 RNA load was measured by quantitative nucleic acid testing, while the detection of other pathogens was performed by immunofluorescence or multiplex NAT. RESULTS Gene expression profiling showed 71 significantly downregulated and 5 upregulated transcripts in SARS-CoV-2-positive lavages versus controls. Downregulated transcripts included genes involved in macrophage development, polarization, and crosstalk (LGALS3, MARCO, ERG2, BTK, RAC1, CD83), and genes involved in chemokine signaling and immunometabolism (NUPR1, CEBPB, CEBPA, PECAM1, CCL18, PPARG, ALOX5, ALOX5AP). Upregulated transcripts featured genes involved in NK-T cell signaling (GZMA, GZMH, GNLY, PRF1, CD3G). Patients with mild COVID-19 showed a significant upregulation of genes involved in blood mononuclear cell/leukocyte function (G0S2, ANXA6, FCGR2B, ADORA3), coagulation (von Willebrand factor [VWF]), interferon response (IFRD1, IL12RB2), and a zinc metalloprotease elevated in asthma (CPA3) compared to asymptomatic cases. In-silico comparison of the 5 COVID-19 BAL cases to a published cohort of lethal COVID-19 showed a significant upregulation of "antigen processing and presentation" and "lysosome" pathways in lethal cases. CONCLUSIONS These data underscore the heterogeneity of immune response in COVID-19. Further studies with a larger dataset are required to gain a better understanding of the hallmarks of SARS-CoV-2 immunological response.
Collapse
Affiliation(s)
- Jasmin D Haslbauer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland,
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anna K Stalder
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias S Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carl P Zinner
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kathleen Jahn
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Ellen Obermann
- Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Jasmin Hanke
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, University Hospital Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, Department of Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|