1
|
Patel J, Hung C, Katapally TR. Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review. Psychiatry Res 2025; 343:116277. [PMID: 39616981 DOI: 10.1016/j.psychres.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 11/17/2024] [Indexed: 12/16/2024]
Abstract
The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13-25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care.
Collapse
Affiliation(s)
- Jamin Patel
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7
| | - Caitlin Hung
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9
| | - Tarun Reddy Katapally
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7; Children's Health Research Institute, Lawson Health Research Institute, 750 Base Line Road East, Suite 300, London, Ontario, Canada N6C 2R5.
| |
Collapse
|
2
|
Dalal S, Ardabili AK, Bonavia AS. Time-Series Deep Learning and Conformal Prediction for Improved Sepsis Diagnosis in Non-ICU Hospitalized Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317716. [PMID: 39606323 PMCID: PMC11601686 DOI: 10.1101/2024.11.21.24317716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose Sepsis, a life-threatening condition from an uncontrolled immune response to infection, is a leading cause of in-hospital mortality. Early detection is crucial, yet traditional diagnostic methods, like SIRS and SOFA, often fail to identify sepsis in non-ICU settings where monitoring is less frequent. Recent machine learning (ML) models offer new possibilities but lack generalizability and suffer from high false alarm rates. Methods We developed a deep learning (DL) model tailored for non-ICU environments, using MIMIC-IV data with a conformal prediction framework to handle uncertainty. The model was trained on 83,813 patients and validated with the eICU-CRD dataset to test performance across hospital settings. Results Our model predicted sepsis at 24, 12, and 6 h before onset, achieving AUROCs of 0.96, 0.98, and 0.99, respectively. The conformal approach reduced false positives and improved specificity. External validation confirmed similar performance, with a 57% reduction in false alarms at the 6 h window, supporting practical use in low-monitoring environments. Conclusions This DL-based model enables accurate, early sepsis prediction with minimal data, addressing key clinical challenges and potentially improving resource allocation in hospital settings by reducing unnecessary ICU admissions and enhancing timely interventions.
Collapse
Affiliation(s)
- Shaunak Dalal
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
| | - Ahad Khaleghi Ardabili
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
| | - Anthony S. Bonavia
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
- Critical Illness and Sepsis Research Center, 700 HMC Cres Rd, Hershey, 17033, PA, USA
| |
Collapse
|
3
|
Xu Z, Li L. Identification and validation of potential genes for the diagnosis of sepsis by bioinformatics and 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38917. [PMID: 39029061 PMCID: PMC11398799 DOI: 10.1097/md.0000000000038917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
This integrated study combines bioinformatics, machine learning, and Mendelian randomization (MR) to discover and validate molecular biomarkers for sepsis diagnosis. Methods include differential expression analysis, weighted gene co-expression network analysis (WGCNA) for identifying sepsis-related modules and hub genes, and functional enrichment analyses to explore the roles of hub genes. Machine learning algorithms identify 3 diagnostic genes - CD177, LDHA, and MCEMP1 - consistently highly expressed in sepsis patients. The nomogram model effectively predicts sepsis risk, supported by receiver operator characteristic (ROC) curves. Correlations between diagnostic genes and immune cell infiltration are observed. MR analysis reveals a positive causal relationship between MCEMP1 and sepsis risk. In conclusion, this study presents potential sepsis diagnostic biomarkers, highlighting the genetic association of MCEMP1 with sepsis for insights into early diagnosis.
Collapse
Affiliation(s)
- Zhongbo Xu
- Emergency Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | | |
Collapse
|
4
|
Garvey M. Hospital Acquired Sepsis, Disease Prevalence, and Recent Advances in Sepsis Mitigation. Pathogens 2024; 13:461. [PMID: 38921759 PMCID: PMC11206921 DOI: 10.3390/pathogens13060461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, commonly associated with nosocomial transmission. Gram-negative bacterial species are particularly problematic due to the release of the lipopolysaccharide toxins upon cell death. The lipopolysaccharide toxin of E. coli has a greater immunogenic potential than that of other Gram-negative bacteria. The resultant dysregulation of the immune system is associated with organ failure and mortality, with pregnant women, ICU patients, and neonates being particularly vulnerable. Additionally, sepsis recovery patients have an increased risk of re-hospitalisation, chronic illness, co-morbidities, organ damage/failure, and a reduced life expectancy. The emergence and increasing prevalence of antimicrobial resistance in bacterial and fungal species has impacted the treatment of sepsis patients, leading to increasing mortality rates. Multidrug resistant pathogens including vancomycin-resistant Enterococcus, beta lactam-resistant Klebsiella, and carbapenem-resistant Acinetobacter species are associated with an increased risk of mortality. To improve the prognosis of sepsis patients, predominantly high-risk neonates, advances must be made in the early diagnosis, triage, and control of sepsis. The identification of suitable biomarkers and biomarker combinations, coupled with machine learning and artificial intelligence, show promise in early detection protocols. Rapid diagnosis of sepsis in patients is essential to inform on clinical treatment, especially with resistant infectious agents. This timely review aims to discuss sepsis prevalence, aetiology, and recent advances towards disease mitigation and control.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-0719-305-529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
5
|
Bomrah S, Uddin M, Upadhyay U, Komorowski M, Priya J, Dhar E, Hsu SC, Syed-Abdul S. A scoping review of machine learning for sepsis prediction- feature engineering strategies and model performance: a step towards explainability. Crit Care 2024; 28:180. [PMID: 38802973 PMCID: PMC11131234 DOI: 10.1186/s13054-024-04948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Sepsis, an acute and potentially fatal systemic response to infection, significantly impacts global health by affecting millions annually. Prompt identification of sepsis is vital, as treatment delays lead to increased fatalities through progressive organ dysfunction. While recent studies have delved into leveraging Machine Learning (ML) for predicting sepsis, focusing on aspects such as prognosis, diagnosis, and clinical application, there remains a notable deficiency in the discourse regarding feature engineering. Specifically, the role of feature selection and extraction in enhancing model accuracy has been underexplored. OBJECTIVES This scoping review aims to fulfill two primary objectives: To identify pivotal features for predicting sepsis across a variety of ML models, providing valuable insights for future model development, and To assess model efficacy through performance metrics including AUROC, sensitivity, and specificity. RESULTS The analysis included 29 studies across diverse clinical settings such as Intensive Care Units (ICU), Emergency Departments, and others, encompassing 1,147,202 patients. The review highlighted the diversity in prediction strategies and timeframes. It was found that feature extraction techniques notably outperformed others in terms of sensitivity and AUROC values, thus indicating their critical role in improving sepsis prediction models. CONCLUSION Key dynamic indicators, including vital signs and critical laboratory values, are instrumental in the early detection of sepsis. Applying feature selection methods significantly boosts model precision, with models like Random Forest and XG Boost showing promising results. Furthermore, Deep Learning models (DL) reveal unique insights, spotlighting the pivotal role of feature engineering in sepsis prediction, which could greatly benefit clinical practice.
Collapse
Affiliation(s)
- Sherali Bomrah
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
- College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Mohy Uddin
- Research Quality Management Section, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, 11426, Riyadh, Saudi Arabia
| | - Umashankar Upadhyay
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
- School of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Matthieu Komorowski
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College of London, South Kensington Campus, London, UK
| | - Jyoti Priya
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
| | - Eshita Dhar
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
| | - Shih-Chang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan
- Emergency Department, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan.
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Agnello L, Vidali M, Padoan A, Lucis R, Mancini A, Guerranti R, Plebani M, Ciaccio M, Carobene A. Machine learning algorithms in sepsis. Clin Chim Acta 2024; 553:117738. [PMID: 38158005 DOI: 10.1016/j.cca.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Sepsis remains a significant global health challenge due to its high mortality and morbidity, compounded by the difficulty of early detection given its variable clinical manifestations. The integration of machine learning (ML) into laboratory medicine for timely sepsis identification and outcome forecasting is an emerging field of interest. This comprehensive review assesses the current body of research on ML applications for sepsis within the realm of laboratory diagnostics, detailing both their strengths and shortcomings. An extensive literature search was performed by two independent investigators across PubMed and Scopus databases, employing the keywords "Sepsis," "Machine Learning," and "Laboratory" without publication date limitations, culminating in January 2023. Each selected study was meticulously evaluated for various aspects, including its design, intent (diagnostic or prognostic), clinical environment, demographics, sepsis criteria, data gathering period, and the scope and nature of features, in addition to the ML methodologies and their validation procedures. Out of 135 articles reviewed, 39 fulfilled the criteria for inclusion. Among these, the majority (30 studies) were focused on devising ML algorithms for diagnosis, fewer (8 studies) on prognosis, and one study addressed both aspects. The dissemination of these studies across an array of journals reflects the interdisciplinary engagement in the development of ML algorithms for sepsis. This analysis highlights the promising role of ML in the early diagnosis of sepsis while drawing attention to the need for uniformity in validating models and defining features, crucial steps for ensuring the reliability and practicality of ML in clinical setting.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy; QI.LAB.MED., Spin-off of the University of Padova, Padova, Italy
| | - Riccardo Lucis
- Department of Medicine (DAME), University of Udine, 33100, Udine, Italy; Microbiology and Virology Unit, Department of Laboratory Medicine, Azienda Sanitaria Friuli Occidentale (ASFO), Santa Maria degli Angeli Hospital, 33170, Pordenone, Italy
| | - Alessio Mancini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy; Operative Unit of Clinical Pathology, AST2 Ancona, Senigallia, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Clinical Pathology Unit, Innovation, Experimentation and Clinical and Translational Research Department, University Hospital of Siena, Siena, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy; QI.LAB.MED., Spin-off of the University of Padova, Padova, Italy; Clinical Biochemistry and Clinical Molecular Biology, School of Medicine, University of Padova, Padova, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy.
| | - Anna Carobene
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|