1
|
Kazemi F, Sadeghian F, Pirsadeghi A, Asadi F, Javdani H, Yousefi-Ahmadipour A. Adipose mesenchymal stem cell conditioned medium and extract: A promising therapeutic option for regenerative breast cancer therapy. SAGE Open Med 2024; 12:20503121241306606. [PMID: 39691866 PMCID: PMC11650577 DOI: 10.1177/20503121241306606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Breast cancer is the second most common cancer and a leading cause of cancer death in U.S. women. The tumor microenvironment, especially nearby adipocytes, plays a crucial role in its progression. Therefore, this study aimed to investigate the effects of human adipose mesenchymal stem cells-derived conditioned medium (SUP) and extract (CE) from on breast cancer cells. Methods Human adipose-derived mesenchymal stem cells were isolated and characterized by flow cytometry using Cluster of Differentiation (CD) markers (CD34, CD45, CD90, and CD105). The differentiation potential was confirmed via adipogenic and osteogenic induction. MCF-7 and MDA-MB-231 cells were treated with SUP and CE, and cell viability was assessed using the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay at 24, 48, and 72 h. Doubling time, colony formation, wound healing, and gene expression for key cancer-related genes (TIMP1, TIMP2, MMP2, PDL1, IDO, Bax, caspase 3, and caspase 9) were also evaluated. Results Both SUP and CE significantly inhibited the viability of MCF-7 and MDA-MB-231 cells, reduced their doubling time, and suppressed colony formation. In wound healing assays, cell migration was notably impaired in MDA-MB-231 cells but less so in MCF-7 cells. Real-time polymerase chain reaction revealed downregulation of TIMP1, MMP2, PDL1, and IDO in MDA-MB-231 cells after treatment, while CE increased certain gene expressions in MCF-7 cells. Bax, caspase 3, and caspase 9 expressions were significantly upregulated in MDA-MB-231 cells but not in MCF-7 cells after treatment. Conclusion Human adipose-derived mesenchymal stem cells-derived SUP and CE exhibit antitumor effects on breast cancer cells, suggesting a potential therapeutic strategy to suppress tumor progression. Mesenchymal stem cells-SUP and CE could be a safe and novel regenerative approach for breast reconstruction postmastectomy without tumor recurrence risk.
Collapse
Affiliation(s)
- Faezeh Kazemi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Sadeghian
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javdani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Kurimori KT, Bastos EO, Camara PRP, Mascarenhas Dias B, Uyeda GL, Alonso N. Alveolar Bone Graft Supplemented With Stromal Vascular Fraction in Patients With Permanent Dentition: A Randomized Study. Cleft Palate Craniofac J 2024:10556656241296711. [PMID: 39584372 DOI: 10.1177/10556656241296711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVE To evaluate bone development in patients with alveolar clefts and permanent dentition treated with alveolar bone graft supplemented with stromal vascular fraction (SVF). DESIGN Clinical, prospective, randomized. LOCATION Single tertiary care institution. PATIENTS Eighteen participants with unilateral alveolar cleft and permanent dentition were included. Patients with other comorbidities were excluded. INTERVENTION The control group underwent alveolar bone grafting (ABG) using iliac crest bone, while the experimental group underwent the same treatment, supplemented with SVF. Adipose tissue was collected by abdominal liposuction, and the SVF was processed using mechanical methods (decantation, microfragmentation, and filtration). MAIN OUTCOME MEASUREMENT Bone formation and bone graft integration rate in alveolar cleft at 6 months postsurgery using 3-dimensional tomographic methods and density measurements. RESULTS The amount of bone graft correlated with an improvement in the relationship between the cleft and noncleft sides (R = 0.78, P < .001) and an improvement in alveolar cleft density (R = 0.69, P = .005), but did not correlate with the graft integration rate. The experimental group showed larger cleft sizes (0.83 × 1.74 cm3, P = .021) and older patients (17.35 × 27.6 years, P = .002), and did not differ in terms of bone development variables when compared to the control group. CONCLUSION ABG supplemented with SVF showed statistically similar bone development results, but with a better trend than conventional ABG. Additionally, the studied groups had asymmetric pre-existing characteristics, with greater severity in the experimental group. A larger study will be necessary to mitigate preoperative characteristic differences and to more accurately compare the results between the methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Nivaldo Alonso
- Burn and Plastic Surgery Department, São Paulo University, Sao Paulo, Brazil
| |
Collapse
|
3
|
Lee H, Lim Y, Lee SH. Rapid-acting pain relief in knee osteoarthritis: autologous-cultured adipose-derived mesenchymal stem cells outperform stromal vascular fraction: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:446. [PMID: 39568086 PMCID: PMC11580442 DOI: 10.1186/s13287-024-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a leading cause of disability, with current treatment options often falling short of providing satisfactory outcomes. Autologous-cultured adipose-derived mesenchymal stem cells (ADMSCs) and stromal vascular fractions (SVFs) have emerged as potential regenerative therapies. METHODS A comprehensive search was conducted among multiple databases for studies up to June 2023. The risk of bias was assessed in randomized and non-randomized studies, adhering to PRISMA guidelines. The study has been registered with PROSPERO (CRD 42023433160). RESULTS Our analysis encompassed 31 studies involving 1,406 patients, of which, 19 studies with 958 patients were included in a meta-analysis, examining both SVF and autologous-cultured ADMSC methods. Significant pain reduction was observed with autologous-cultured ADMSCs starting at 3 months (MD = -2.43, 95% CI, -3.99, -0.86), whereas significant pain mitigation in response to SVF therapy was found to start at 12 months (MD = -2.13, 95% CI, -3.06, -1.21). Both autologous-cultured ADMSCs and SVF provided significant improvement in knee function starting at 12 months (MD = -9.19, 95% CI, -12.48, -5.90 vs. MD = -9.09, 95% CI, -12.67, -5.51, respectively). We found no evidence of severe adverse events linked directly to ADMSC therapy. CONCLUSION Autologous-cultured ADMSCs offer a promising alternative for more rapid pain relief in knee OA, with both ADMSCs and SVF demonstrating substantial long-term benefits in joint function and cartilage regeneration, in the absence of any severe ADMSC-related adverse events.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Youngeun Lim
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Seon-Heui Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, Incheon, Korea.
| |
Collapse
|
4
|
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Aleksandrovich Vetoshkin A, Gavriilovich Goncharov N, Encarnación Ramirez MDJ, Montemurro N. Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Med Sci (Basel) 2024; 12:32. [PMID: 39051378 PMCID: PMC11270198 DOI: 10.3390/medsci12030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Avascular necrosis (AVN) of the femoral head is a pressing orthopedic issue, leading to bone tissue death due to disrupted blood supply and affecting the quality of life of individuals significantly. This review focuses on conservative treatments, evaluating their efficacy as mainstay therapies. Enhanced understanding of AVN's pathophysiology and advancements in diagnostic tools have rekindled interest in non-surgical interventions, emphasizing personalized, multidisciplinary approaches for improved outcomes. MATERIAL AND METHOD A systematic search was conducted on PubMed, SCOPUS, and Google Scholar databases from January 2020 to August 2023, with the objective of focusing on conservative treatments for AVN of the femoral head. Eligible studies, including original research, case reports, and observational studies, were examined for relevant, well-documented patient outcomes post-conservative treatments, excluding non-English and surgically focused articles without comparative conservative data. RESULTS A systematic search yielded 376 records on AVN of the femoral head across multiple databases. After de-duplication and rigorous screening for relevance and quality, 11 full-text articles were ultimately included for a comprehensive qualitative synthesis, focusing on conservatively managing the condition. CONCLUSIONS This review evaluates the effectiveness of conservative treatments such as pharmacological interventions and physical modalities in managing AVN of the femoral head. Despite promising results in symptom alleviation and disease progression delay, variability in outcomes and methodological limitations in studies necessitate further rigorous, randomized controlled trials for a robust, patient-centric approach to optimize therapeutic outcomes in AVN management.
Collapse
Affiliation(s)
| | | | - Eduard Nikolaevich Bezuglov
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | | | | | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
5
|
Copcu HE. Autologization of Exosomes with Deparenchymized Adipose Tissue: An Innovative Approach for Regenerative Medicine and Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5982. [PMID: 39015362 PMCID: PMC11251682 DOI: 10.1097/gox.0000000000005982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
Background Among all regenerative applications developed in recent years, the use of exosomes has generated by far the greatest interest. Exosome products from allogeneic and xenogeneic sources are available on the market. A key challenge is controlling the effects of nonautologous exosomes. We hypothesized that combining exosomes with a patient's own extracellular matrix (ECM) can create "autologization," enabling control over their effects. This study aimed to provide the rationale and a guide for future research exploring the autologization of exosome applications using deparenchymized adipose tissue (DPAT). Methods DPAT adipose tissue was achieved using 1200-, 400-, and 35-micrometer blades in an ultrasharp blade system (Adinizer), and then "autologization" was achieved by combining the obtained DPAT with allogeneic exosomes. DPAT was evaluated histochemically, and exosomes were counted and analyzed with the Nanosight device. Results The DPAT process using ultrasharp blades is easily performed. DPAT obtained from adipose tissue was then combined with allogenic exosomes. It has been demonstrated histopathologically that adipocytes are eliminated in deparenchymized fat tissue, and only ECM and stromal cells remain. It has also been proven that the number of exosomes is not affected by the combination. Conclusions This study introduces two novel concepts previously unknown in the literature, "deparenchymization" and "autologization," representing an innovative approach in plastic surgery and regenerative medicine. Our novel approach enriches regenerative cells while preserving critical ECM signals, overcoming the limitations of existing isolation methods. Extensive research is still needed, but autologization using DPAT ECM holds great promise for translating exosome-based treatments into practice.
Collapse
Affiliation(s)
- H. Eray Copcu
- From the Aesthetic, Plastic and Reconstructive Surgery, G-CAT (Gene, and Tissue) Academy, Istanbul, Turkey
| |
Collapse
|
6
|
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Engelgard M, Igorevich EI, Velentinovich Kotenko K, Encarnacion Ramirez MDJ, Montemurro N. Comparative Analysis of Stromal Vascular Fraction and Alternative Mechanisms in Bone Fracture Stimulation to Bridge the Gap between Nature and Technological Advancement: A Systematic Review. Biomedicines 2024; 12:342. [PMID: 38397944 PMCID: PMC10887176 DOI: 10.3390/biomedicines12020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Various stimulation methods, including electrical, ultrasound, mechanical, and biological interventions, are explored, each leveraging intricate cellular and molecular dynamics to expedite healing. The advent of stromal vascular fraction (SVF) marks a significant stride, offering multifarious benefits in bone healing, from enhanced bone formation to optimal vascular integration, drawing a harmonious balance between innate mechanisms and scientific advancements. METHODS This systematic review was conducted focusing on literature from 2016 to 2023 and encompassing various bone healing stimulation mechanisms like SVF, electrical, ultrasound, and mechanical stimulation. The extracted data underwent meticulous synthesis and analysis, emphasizing comparative evaluations of mechanisms, applications, and outcomes of each intervention. RESULTS The reviewed studies reveal the potential of SVF in bone fracture healing, with its regenerative and anti-inflammatory effects. The purification of SVF is crucial for safe therapeutic use. Characterization involves flow cytometry and microscopy. Studies show SVF's efficacy in bone regeneration, versatility in various contexts, and potential for clinical use. SVF appears superior to electrical, ultrasound, and mechanical stimulation, with low complications. CONCLUSIONS This review compares bone healing methods, including SVF. It provides valuable insights into SVF's potential for bone regeneration. However, due to limited human studies and potential bias, cautious interpretation is necessary. Further research is essential to validate these findings and determine the optimal SVF applications in bone healing.
Collapse
Affiliation(s)
| | | | | | - Mikhail Engelgard
- Petrovsky Russian Scientific Center of Surgery, 121359 Moscow, Russia
| | | | | | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|