Sogame M, Naraki Y, Sasaki T, Seki M, Yokota K, Masada S, Hakamatsuka T. Quality Assessment of Medicinal Product and Dietary Supplements Containing Vitex agnus-castus by HPLC Fingerprint and Quantitative Analyses.
Chem Pharm Bull (Tokyo) 2019;
67:527-533. [PMID:
31155557 DOI:
10.1248/cpb.c18-00725]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to evaluate the quality of 11 products sold in Japan (one medicinal product and 10 dietary supplements) containing/claiming to contain chasteberry extract (fruit of Vitex agnus-castus L.) using HPLC fingerprint (15 characteristic peaks), quantitative determination of chemical marker compounds, and a disintegration test. The HPLC profile of the medicinal product was similar to that of the reference standard of V. agnus-castus fruit dry extract obtained from European Directive for the Quality of Medicines (EDQM), whereas the profiles of some dietary supplements showed great variability, such as different proportions of peaks or lack of peaks. Results of the principal component analysis of the fingerprint data were consistent with those of the HPLC profile analysis. The contents of two markers, agnuside and casticin, in dietary supplements showed wide variability; this result was similar to that achieved with the HPLC fingerprint. In particular, agnuside and/or casticin was not detected in two dietary supplements. Furthermore, one dietary supplement was suspected to be contaminated with V. negundo, as evidenced from the results of agnuside to casticin ratio and assay of negundoside, a characteristic marker of V. negundo. Results of the disintegration test showed poor formulation quality of two dietary supplements. These results call attention to the quality problems of many dietary supplements, such as incorrect or poor-quality origin, different contents of the active ingredient, and/or unauthorized manufacturing procedures.
Collapse