1
|
Alharthi F, Althagafi HA, Jafri I, Oyouni AAA, Althaqafi MM, Al-Hijab LYA, Al-Hazmi NE, Elagib SM, Naguib DM. Phytochemical Composition and Bioactivities of Some Hydrophytes: Antioxidant, Antiparasitic, Antibacterial, and Anticancer Properties and Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2148. [PMID: 39124266 PMCID: PMC11313917 DOI: 10.3390/plants13152148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous extract preparation. Phytochemical composition and antioxidant capacity were assessed using DPPH assays. Extracts were tested for antiparasitic, antibacterial, anti-biofilm, and anticancer activities through standard in vitro assays, measuring IC50 values, and evaluating mechanisms of action, including cell viability and high-content screening assays. The results showed that the aquatic plants were rich in pharmaceutical compounds. The antioxidant capacity of these extracts exceeded that of vitamin C. The extracts showed promising antiparasitic activity against pathogens like Opisthorchis viverrini and Plasmodium falciparum, with IC50 values between 0.7 and 2.5 µg/mL. They also demonstrated low MICs against various pathogenic bacteria, causing DNA damage, increased plasma membrane permeability, and 90% biofilm inhibition. In terms of anticancer activity, extracts were effective against a panel of cancer cell lines, with Ludwigia stolonifera exhibiting the highest efficacy. Its IC50 ranged from 0.5 µg/mL for pancreatic, esophageal, and colon cancer cells to 1.5 µg/mL for gastric cancer cells. Overall, IC50 values for all extracts were below 6 µg/mL, showing significant apoptotic activity, increased nuclear intensity, plasma membrane permeability, mitochondrial membrane permeability, and cytochrome c release, and outperforming doxorubicin. This study highlights the potential of aquatic plants as sources for new, safe, and effective drugs with strong antiparasitic, antibacterial, and anticancer properties.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hussam A. Althagafi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (I.J.); (M.M.A.)
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M. Althaqafi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (I.J.); (M.M.A.)
| | - Layla Yousif Abdullah Al-Hijab
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Qunfudah 21961, Saudi Arabia;
| | - Somia M. Elagib
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
- Science Department, Faculty of Teachers, Nile Valley University, Edammer, Atbara 46611, Sudan
| | - Deyala M. Naguib
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
2
|
Akula S, Gonzalez CG, Kermet S, Burleson M. Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:127-135. [PMID: 38915457 PMCID: PMC11194031 DOI: 10.22099/mbrc.2024.49044.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.
Collapse
Affiliation(s)
- Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Cristian G. Gonzalez
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Sophia Kermet
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
3
|
Ibarra-Berumen J, Moreno-Eutimio MA, Rosales-Castro M, Ordaz-Pichardo C. Cytotoxic effect and induction of apoptosis in human cervical cancer cells by a wood extract from Prosopis laevigata. Drug Chem Toxicol 2023; 46:931-943. [PMID: 35950554 DOI: 10.1080/01480545.2022.2109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Cervical cancer ranks fourth in incidence among women worldwide. Cisplatin is currently the first-line drug of treatment for cervical cancer; however, it causes serious adverse effects. Therefore, it is crucial to explore natural products for cervical cancer treatment. Prosopis laevigata is a medicinal plant frequently used for ophthalmological and gastrointestinal infections. In this study, we used the MTT cell viability assay to evaluate the cytotoxic effect of a wood extract from Prosopis laevigata (Extract T7) in SiHa, HeLa, Ca Ski, and C-33 A cancer cell lines. Phosphatidylserine translocation and cell cycle evaluations were performed to determine the mechanism of cellular death. The extract's safety was evaluated using the Ames test with Salmonella typhimurium strains, in vivo acute toxicity assay, and repeated dose toxicity assay in mice. We also identified phenolic compounds of Extract T7 through liquid chromatography/mass spectrometry. Naringin, catechin, and eriodictyol demonstrated a higher concentration in Extract T7. Additionally, Extract T7 exhibited a cytotoxic effect against cervical cancer cells, where C-33 A was the most sensitive (IC50= 22.58 ± 1.10 µg/mL and 14.26 ± 1.11 µg/mL at 24 h and 48 h respectively). Extract T7 induced death by apoptosis and cell cycle arrest in the G2 phase in C-33 A. Extract T7 was not mutagenic. No toxicological effects were observed during acute toxicity and repeated dose toxicity for 28 days. Therefore, further evaluations of Extract T7 should be conducted to identify the complete mechanism of action for potential anti-tumoral activity and safety before conducting studies in animal models.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Alc. Coyoacán, Ciudad de México, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Cynthia Ordaz-Pichardo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Alc. Gustavo A. Madero, Ciudad de México, México
| |
Collapse
|
4
|
Arévalo CM, Cruz-Rodriguez N, Quijano S, Fiorentino S. Plant-derived extracts and metabolic modulation in leukemia: a promising approach to overcome treatment resistance. Front Mol Biosci 2023; 10:1229760. [PMID: 37520325 PMCID: PMC10382028 DOI: 10.3389/fmolb.2023.1229760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Leukemic cells acquire complex and often multifactorial mechanisms of resistance to treatment, including various metabolic alterations. Although the use of metabolic modulators has been proposed for several decades, their use in clinical practice has not been established. Natural products, the so-called botanical drugs, are capable of regulating tumor metabolism, particularly in hematopoietic tumors, which could partly explain the biological activity attributed to them for a long time. This review addresses the most recent findings relating to metabolic reprogramming-Mainly in the glycolytic pathway and mitochondrial activity-Of leukemic cells and its role in the generation of resistance to conventional treatments, the modulation of the tumor microenvironment, and the evasion of immune response. In turn, it describes how the modulation of metabolism by plant-derived extracts can counteract resistance to chemotherapy in this tumor model and contribute to the activation of the antitumor immune system.
Collapse
Affiliation(s)
- Cindy Mayerli Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Corzo Parada L, Urueña C, Leal-García E, Barreto A, Ballesteros-Ramírez R, Rodríguez-Pardo V, Fiorentino S. Doxorubicin Activity Is Modulated by Traditional Herbal Extracts in a 2D and 3D Multicellular Sphere Model of Leukemia. Pharmaceutics 2023; 15:1690. [PMID: 37376139 DOI: 10.3390/pharmaceutics15061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The modulation of the tumor microenvironment by natural products may play a significant role in the response of tumor cells to chemotherapy. In this study, we evaluated the effect of extracts derived from P2Et (Caesalpinia spinosa) and Anamú-SC (Petiveria alliacea) plants, previously studied by our group, on the viability and ROS levels in the K562 cell line (Pgp- and Pgp+), endothelial cells (ECs, Eahy.926 cell line) and mesenchymal stem cells (MSC) cultured in 2D and 3D. The results show that: (a) the two botanical extracts are selective on tumor cells compared to doxorubicin (DX), (b) cytotoxicity is independent of the modulation of intracellular ROS for plant extracts, unlike DX, (c) the interaction with DX can be influenced by chemical complexity and the expression of Pgp, (d) the 3D culture shows a greater sensitivity of the tumor cells to chemotherapy, in co-treatment with the extracts. In conclusion, the effect of the extracts on the viability of leukemia cells was modified in multicellular spheroids with MSC and EC, suggesting that the in vitro evaluation of these interactions can contribute to the comprehension of the pharmacodynamics of the botanical drugs.
Collapse
Affiliation(s)
- Laura Corzo Parada
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Efraín Leal-García
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Viviana Rodríguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| |
Collapse
|
6
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
8
|
Visioli F. Science and claims of the arena of food bioactives: comparison of drugs, nutrients, supplements, and nutraceuticals. Food Funct 2022; 13:12470-12474. [PMID: 36398767 DOI: 10.1039/d2fo02593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The scientific community and lay press are participating in a heated debate over the usefulness of food bioactives when used as dietary supplements. This debate often ignores hard scientific evidence and the outcomes of proper research in either direction. Some propose that health claims should be awarded based on classic pharmacological parameters of efficacy and safety. Others suggest that a botanical history of their safe use and basic biological evidence in support of their effects should suffice to allow their marketing. The current regulatory impasse does not help solve this conundrum. It is time for scientists, regulators, and legislators to open an epistemological debate on the appropriateness of using classic pharmacological methods for substances that do not share the usual drug profiles and which are, consequently, difficult to study in humans.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy. .,IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
9
|
Arafat K, Sulaiman S, Al-Azawi AM, Yasin J, Sugathan S, Nemmar A, Karam S, Attoub S. Origanum majorana essential oil decreases lung tumor growth and metastasis in vitro and in vivo. Biomed Pharmacother 2022; 155:113762. [PMID: 36182733 DOI: 10.1016/j.biopha.2022.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
10
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
11
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
12
|
Fuel M, Mesas C, Martínez R, Ortiz R, Quiñonero F, Prados J, Porres JM, Melguizo C. Antioxidant and antiproliferative potential of ethanolic extracts from Moringa oleifera, Tropaeolum tuberosum and Annona cherimola in colorrectal cancer cells. Biomed Pharmacother 2021; 143:112248. [PMID: 34649364 DOI: 10.1016/j.biopha.2021.112248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera, Tropaeolum tuberosum and Annona cherimola are medicinal plants traditionally used in Ecuador. However, their therapeutic properties are not completely known. We analyzed chromatographically ethanolic extracts of the seeds of M. oleifera, A. cherimola and the tubers of T. tuberosum; all presented a high content of polyphenols. The extract of A. cherimola showed the highest antioxidant activity and M. oleifera had the highest capacity to enhance the activity of detoxifying enzymes such as glutathione S-transferase and quinone oxidoreductase. The antitumor effect of these extracts was evaluated in vitro with colorectal cancer (CRC) cell lines T84, HCT-15, SW480 and HT-29, as well as with cancer stem cells (CSCs). A. cherimola and M. oleifera extracts presented the lowest IC50 in T-84 and HCT-15 (resistant) cells, respectively, as well as the highest level of inhibition of proliferation in multicellular tumor spheroids of HCT-15 cells. The inhibitory effect on CSCs is noteworthy because in vivo, these cells are often responsible for cancer recurrences and resistance to chemotherapy. Moreover, all extracts showed a synergistic activity with 5-Fu. The antiproliferative mechanism of the extracts was related to overexpression of caspases 9, 8 and 3 and increased production of reactive oxygen species. In addition, we observed cell death by autophagy in M. oleifera and T. tuberosum extracts. Therefore, these ethanolic extracts are excellent candidates for future molecular analysis of the presence of bioactive compounds and in vivo studies which could improve colon cancer therapy.
Collapse
Affiliation(s)
- Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain; Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain.
| | - Jesús M Porres
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain; Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| |
Collapse
|
13
|
Cancer Therapy Challenge: It Is Time to Look in the "St. Patrick's Well" of the Nature. Int J Mol Sci 2021; 22:ijms221910380. [PMID: 34638721 PMCID: PMC8508794 DOI: 10.3390/ijms221910380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a leading cause of death despite improvements in diagnosis, drug discovery and therapy approach. Therefore, there is a strong need to improve methodologies as well as to increase the number of approaches available. Natural compounds of different origins (i.e., from fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular, synergistic strategies may represent an intriguing approach, combining natural compounds with classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug concentrations. In this review, we focus primarily on those natural compounds utilized in synergistic approached to treating cancer, with particular attention to those compounds that have gained the most research interest.
Collapse
|
14
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153626. [PMID: 34301463 DOI: 10.1016/j.phymed.2021.153626] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antibiotic-resistant bacteria pose a global health threat. Traditional antibiotics can lose their effectiveness, and the development of novel effective antimicrobials has become a priority in recent years. In this area, plants represent an invaluable source of antimicrobial compounds with vast therapeutic potential. PURPOSE To review the full possible spectrum of plant antimicrobial agents (plant compounds, extracts and essential oils) discovered from 2016 to 2021 and their potential to decrease bacterial resistance. Their activities against bacteria, with special emphasis on multidrug resistant bacteria, mechanisms of action, possible combinations with traditional antibiotics, roles in current medicine and future perspectives are discussed. METHODS Studies focusing on the antimicrobial activity of compounds of plant origin and their mechanism of action against bacteria were identified and summarized, including contributions from January 2016 until January 2021. Articles were extracted from the Medline database using PubMed search engine with relevant keywords and operators. RESULTS The search yielded 11,689 articles from 149 countries, of which 101 articles were included in this review. Reports from 41 phytochemicals belonging to 20 families were included. Reports from plant extracts and essential oils from 39 plant species belonging to 17 families were also included. Polyphenols and terpenes were the most active phytochemicals studied, either alone or as a part of plant extracts or essential oils. Plasma membrane disruption was the most common mechanism of antimicrobial action. Number and position of phenolic hydroxyl groups, double bonds, delocalized electrons and conjugation with sugars in the case of flavonoids seemed to be crucial for antimicrobial capacity. Combinations of phytochemicals with beta-lactam antibiotics were the most studied, and the inhibition of efflux pumps was the most common synergistic mechanism. CONCLUSION In recent years, terpenes, flavones, flavonols and some alkaloids and phenylpropanoids, either isolated or as a part of extracts, have shown promising antimicrobial activity, being membrane disruption their most common mechanism. However, their utilization as appropriate antimicrobials need to be boosted by means of new omics technologies and network pharmacology to find the most effective combinations among them or in combination with antibiotics.
Collapse
Affiliation(s)
- F J Álvarez-Martínez
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - E Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - M Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - V Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
15
|
Chilczuk B, Marciniak B, Kontek R, Materska M. Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity. Molecules 2021; 26:5215. [PMID: 34500648 PMCID: PMC8434587 DOI: 10.3390/molecules26175215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Ethanol extracts of two types of pepper (sweet and hot) were separated into fractions with increasing lipophilicity. After drying the extracts and fractions, their chemical composition, anti-radical activity in the DPPH radical system, and cytotoxic activity against PC-3 and HTC-116 cells were determined. A detailed qualitative analysis of the fractions was performed with the LC-QTOF-MS method. It was found that the chemical composition of pepper fractions did not always reflect their biological activity. The highest antiradical activity was detected in the fraction eluted with 40% methanol from sweet pepper. The highest total content of phenolic compounds was found in an analogous fraction from hot pepper, and this fraction showed the strongest cytotoxic effect on the PC-3 tumour line. The LC-MS analysis identified 53 compounds, six of which were present only in sweet pepper and four only in hot pepper. The unique chemical composition of the extracts was found to modulate their biological activity, which can only be verified experimentally.
Collapse
Affiliation(s)
- Barbara Chilczuk
- Group of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Małgorzata Materska
- Group of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| |
Collapse
|
16
|
Al-Quraishy S, Abdel-Maksoud MA, Al-Shaebi EM, Dkhil MA. Botanical candidates from Saudi Arabian flora as potential therapeutics for Plasmodium infection. Saudi J Biol Sci 2021; 28:1374-1379. [PMID: 33613066 PMCID: PMC7878689 DOI: 10.1016/j.sjbs.2020.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Malaria is a lethal parasitic disease affecting over two hundred million people worldwide and kills almost half a million people per year. Until now, there is no curative treatment for this disease that has a substantial morbidity. The available chemotherapeutic agents are unable to completely control the infection with the continuous appearance of drug resistance. Consequently, the search for new therapeutic agents with high safety profiles and low side effects is of paramount importance. Several natural products have been investigated and proven to have antimalarial effects either in vivo or in vitro. A large number of plants have been studied globally for their antimalarial activities. However, studies that have been conducted in this field in Saudi Arabia are not enough. This article presents global and local research on the need for novel natural antimalarial agents with a particular emphasis on studies involving plants from Saudi Arabian flora.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| |
Collapse
|
17
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
18
|
Álvarez-Martínez FJ, Rodríguez JC, Borrás-Rocher F, Barrajón-Catalán E, Micol V. The antimicrobial capacity of Cistus salviifolius and Punica granatum plant extracts against clinical pathogens is related to their polyphenolic composition. Sci Rep 2021; 11:588. [PMID: 33436818 PMCID: PMC7803989 DOI: 10.1038/s41598-020-80003-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial resistance poses a serious threat to human health worldwide. Plant compounds may help to overcome antibiotic resistance due to their potential resistance modifying capacity. Several botanical extracts and pure polyphenolic compounds were screened against a panel of eleven bacterial isolates with clinical relevance. The two best performing agents, Cistus salviifolius (CS) and Punica granatum (GP) extracts, were tested against 100 Staphylococcus aureus clinical isolates, which resulted in average MIC50 values ranging between 50-80 µg/mL. CS extract, containing hydrolyzable tannins and flavonoids such as myricetin and quercetin derivatives, demonstrated higher activity against methicillin-resistant S. aureus isolates. GP extract, which contained mostly hydrolyzable tannins, such as punicalin and punicalagin, was more effective against methicillin-sensitive S. aureus isolates. Generalized linear model regression and multiple correspondence statistical analysis revealed a correlation between a higher susceptibility to CS extract with bacterial resistance to beta-lactam antibiotics and quinolones. On the contrary, susceptibility to GP extract was related with bacteria sensitive to quinolones and oxacillin. Bacterial susceptibility to GP and CS extracts was linked to a resistance profile based on cell wall disruption mechanism. In conclusion, a differential antibacterial activity against S. aureus isolates was observed depending on antibiotic resistance profile of isolates and extract polyphenolic composition, which may lead to development of combinatorial therapies including antibiotics and botanical extracts.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202, Elche, Spain
| | - Juan Carlos Rodríguez
- Microbiology Section, University General Hospital of Alicante, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation, Alicante, Spain
| | - Fernando Borrás-Rocher
- Statistics and Operative Research Department, Miguel Hernández University (UMH), Avda. Universidad s/n, 03202, Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202, Elche, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202, Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Madrid, Spain
| |
Collapse
|
19
|
Sebola TE, Uche-Okereafor NC, Mekuto L, Makatini MM, Green E, Mavumengwana V. Antibacterial and Anticancer Activity and Untargeted Secondary Metabolite Profiling of Crude Bacterial Endophyte Extracts from Crinum macowanii Baker Leaves. Int J Microbiol 2020; 2020:8839490. [PMID: 33488726 PMCID: PMC7803143 DOI: 10.1155/2020/8839490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
This study isolated and identified endophytic bacteria from the leaves of Crinum macowanii and investigated the potential of the bacterial endophyte extracts as antibacterial and anticancer agents and their subsequent secondary metabolites. Ethyl acetate extracts from the endophytes and the leaves (methanol: dichloromethane (1 : 1)) were used for antibacterial activity against selected pathogenic bacterial strains by using the broth microdilution method. The anticancer activity against the U87MG glioblastoma and A549 lung carcinoma cells was determined by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Bacterial endophytes that were successfully isolated from C. macowanii leaves include Raoultella ornithinolytica, Acinetobacter guillouiae, Pseudomonas sp., Pseudomonas palleroniana, Pseudomonas putida, Bacillus safensis, Enterobacter asburiae, Pseudomonas cichorii, and Arthrobacter pascens. Pseudomonas cichorii exhibited broad antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria while Arthrobacter pascens displayed the least MIC of 0.0625 mg/mL. Bacillus safensis crude extracts were the only sample that showed notable cell reduction of 50% against A549 lung carcinoma cells at a concentration of 100 μg/mL. Metabolite profiling of Bacillus safensis, Pseudomonas cichorii, and Arthrobacter pascens crude extracts revealed the presence of known antibacterial and/or anticancer agents such as lycorine (1), angustine (2), crinamidine (3), vasicinol (4), and powelline. It can be concluded that the crude bacterial endophyte extracts obtained from C. macowanii leaves can biosynthesize bioactive compounds and can be bioprospected for medical application into antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Tendani E. Sebola
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Nkemdinma C. Uche-Okereafor
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Maya Mellisa Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
20
|
Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, Grewal S, Okoko M, Arora M, Miles L, Pandey S. Natural Health Products (NHP's) and Natural Compounds as Therapeutic Agents for the Treatment of Cancer; Mechanisms of Anti-Cancer Activity of Natural Compounds and Overall Trends. Int J Mol Sci 2020; 21:E8480. [PMID: 33187200 PMCID: PMC7697102 DOI: 10.3390/ijms21228480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer therapeutics, such as tubulin-targeting chemotherapy drugs, cause cytotoxic, non-selective effects. These harmful side-effects drastically reduce the cancer patient's quality of life. Recently, researchers have focused their efforts on studying natural health products (NHP's) which have demonstrated the ability to selectively target cancer cells in cellular and animal models. However, the major hurdle of clinical validation remains. NHP's warrant further clinical investigation as a therapeutic option since they exhibit low toxicity, while retaining a selective effect. Additionally, they can sensitize cancerous cells to chemotherapy, which enhances the efficacy of chemotherapeutic drugs, indicating that they can be utilized as supplemental therapy. An additional area for further research is the investigation of drug-drug interactions between NHP's and chemotherapeutics. The objectives of this review are to report the most recent results from the field of anticancer NHP research, and to highlight the most recent advancements in possible supplemental therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada; (B.S.); (S.S.); (C.R.); (J.K.); (R.J.); (A.P.); (S.G.); (M.O.); (M.A.); (L.M.)
| |
Collapse
|
21
|
Agulló-Chazarra L, Borrás-Linares I, Lozano-Sánchez J, Segura-Carretero A, Micol V, Herranz-López M, Barrajón-Catalán E. Sweet Cherry Byproducts Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants (Basel) 2020; 9:antiox9050418. [PMID: 32414056 PMCID: PMC7278782 DOI: 10.3390/antiox9050418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the cosmetic industry, there is a continuous demand for new and innovative ingredients for product development. In the context of continual renovation, both cosmetic companies and customers are particularly interested in compounds derived from natural sources due to their multiple benefits. In this study, novel and green-extractive techniques (pressurized solvent, supercritical CO2, and subcritical water extractions) were used to obtain three new extracts from sweet cherry stems, a byproduct generated by the food industry. The extracts were characterized by high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS), and 57 compounds, mainly flavonoids but also organic and phenolic acids, fatty acids, and terpenes, were identified. After analytical characterization, a multistep screening approach, including antioxidant, enzymatic, and photoprotective cellular studies, was used to select the best extract according to its benefits of interest to the cosmetics industry. The extract obtained with supercritical CO2 presented the best characteristics, including a wide antioxidant capacity, especially against lipid peroxyl and •OH free radicals, as well as relevant photoprotective action and antiaging properties, making it a potential new ingredient for consideration in the development of new cosmetics.
Collapse
Affiliation(s)
- Luz Agulló-Chazarra
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III, 07122 Palma de Mallorca, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- Correspondence: ; Tel.: +34-965222586
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| |
Collapse
|
22
|
Preclinical Evaluation of the Antimicrobial-Immunomodulatory Dual Action of Xenohormetic Molecules against Haemophilus influenzae Respiratory Infection. Biomolecules 2019; 9:biom9120891. [PMID: 31861238 PMCID: PMC6995536 DOI: 10.3390/biom9120891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin’s effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.
Collapse
|
23
|
The Potential Synergistic Modulation of AMPK by Lippia citriodora Compounds as a Target in Metabolic Disorders. Nutrients 2019; 11:nu11122961. [PMID: 31817196 PMCID: PMC6950112 DOI: 10.3390/nu11122961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Lippia citriodora (LC) represents a complex plant-derived source of polyphenols and iridoids that has shown beneficial properties against obesity-related metabolic disorders. The complete extract and its major compound, verbascoside, have shown AMPK-activating capacity in cell and animal models. In this work, we aimed to elucidate the contribution of the different compounds present in the LC extract on the AMPK activation capacity of the whole extract. Semipreparative reversed-phase high-performance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry (RP-HPLC-ESI-TOF-MS) was used to identify the major compounds with bioassay-guided fractionation in an adipocyte cell model for the measurement of AMPK activity. Twenty-two compounds were identified and purified almost to homogeneity in 16 fractions, and three compounds, namely verbascoside, luteolin-7-diglucuronide and loganic acid, showed the highest AMPK-activating capacity. The synergy study using the checkerboard and fractional inhibitory concentration index (FICI) methods exhibited synergistic behavior between loganic acid and luteolin-7-diglucuronide. Molecular docking experiments revealed that these three compounds might act as direct agonists of AMPK, binding to the AMP binding sites of the gamma subunit and/or the different sites of the interaction zones between the gamma and beta subunits. Although our findings conclude that the bioactivity of the extract is mainly due to verbascoside, the synergy found between loganic acid and luteolin-7-diglucuronide deserves further research aimed to develop optimized combinations of polyphenols as a new nutritional strategy against obesity-related metabolic disorders.
Collapse
|
24
|
Ruiz-Torres V, Rodríguez-Pérez C, Herranz-López M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Barrajón-Catalán E, Micol V. Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules 2019; 9:biom9120771. [PMID: 31771155 PMCID: PMC6995635 DOI: 10.3390/biom9120771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Ana-María Gómez-Caravaca
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- Correspondence: ; Tel.: +34-965-222-586
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain
| |
Collapse
|
25
|
Barrajón-Catalán E. Natural Compounds as New Cancer Treatments. MEDICINES 2019; 6:medicines6030078. [PMID: 31340520 PMCID: PMC6789864 DOI: 10.3390/medicines6030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Cancer is still a global challenge worldwide with a high impact not only on human health, causing morbidity and mortality, but also on economics [...].
Collapse
Affiliation(s)
- Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|