1
|
Kim SJ, Ko WK, Han GH, Lee D, Cho MJ, Sheen SH, Sohn S. Axon guidance gene-targeted siRNA delivery system improves neural stem cell transplantation therapy after spinal cord injury. Biomater Res 2023; 27:101. [PMID: 37840145 PMCID: PMC10577901 DOI: 10.1186/s40824-023-00434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) derived from the embryonic spinal cord are excellent candidates for the cellular regeneration of lost neural cells after spinal cord injury (SCI). Semaphorin 3 A (Sema3A) is well known as being implicated in the major axon guidance of the growth cone as a repulsive function during the development of the central nervous system, yet its function in NSC transplantation therapy for SCI has not been investigated. Here, we report for the first time that embryonic spinal cord-derived NSCs significantly express Sema3A in the SCI environment, potentially facilitating inhibition of cell proliferation after transplantation. METHODS siRNA-Sema3A was conjugated with poly-l-lysin-coated gold nanoparticles (AuNPs) through a charge interaction process. NSCs were isolated from embryonic spinal cords of rats. Then, the cells were embedded into a dual-degradable hydrogel with the siRNA- Sema3A loaded-AuNPs and transplanted after complete SCI in rats. RESULTS The knockdown of Sema3A by delivering siRNA nanoparticles via dual-degradable hydrogels led to a significant increase in cell survival and neuronal differentiation of the transplanted NSCs after SCI. Of note, the knockdown of Sema3A increased the synaptic connectivity of transplanted NSC in the injured spinal cord. Moreover, extracellular matrix molecule and functional recovery were significantly improved in Sema3A-inhibited rats compared to those in rats with only NSCs transplanted. CONCLUSIONS These findings demonstrate the important role of Sema3A in NSC transplantation therapy, which may be considered as a future cell transplantation therapy for SCI cases.
Collapse
Affiliation(s)
- Seong Jun Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Gong Ho Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Daye Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min Jai Cho
- Department of Neurosurgery, Chungbuk National University, 776, 1Sunhawn-ro, Seowon-gu, Cheongju-si, 28644, Republic of Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang- gu, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Correia C, Reis RL, Pashkuleva I, Alves NM. Adhesive and self-healing materials for central nervous system repair. BIOMATERIALS ADVANCES 2023; 151:213439. [PMID: 37146528 DOI: 10.1016/j.bioadv.2023.213439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The central nervous system (CNS) has a limited ability to regenerate after a traumatic injury or a disease due to the low capacity of the neurons to re-grow and the inhibitory environment formed in situ. Current therapies include the use of drugs and rehabilitation, which do not fully restore the CNS functions and only delay the pathology progression. Tissue engineering offers a simple and versatile solution for this problem through the use of bioconstructs that promote nerve tissue repair by bridging cavity spaces. In this approach, the choice of biomaterial is crucial. Herein, we present recent advances in the design and development of adhesive and self-healing materials that support CNS healing. The adhesive materials have the advantage of promoting recovery without the use of needles or sewing, while the self-healing materials have the capacity to restore the tissue integrity without the need for external intervention. These materials can be used alone or in combination with cells and/or bioactive agents to control the inflammation, formation of free radicals, and proteases activity. We discuss the advantages and drawbacks of different systems. The remaining challenges that can bring these materials to clinical reality are also briefly presented.
Collapse
Affiliation(s)
- Cátia Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Xie P, Ling H, Pang M, He L, Zhuang Z, Zhang G, Chen Z, Weng C, Cheng S, Jiao J, Zhao Z, Tang BZ, Rong L. Umbilical Cord Mesenchymal Stem Cells Promoting Spinal Cord Injury Repair Visually Monitored by AIE‐Tat Nanoparticles. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peigen Xie
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Haiqian Ling
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Mao Pang
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Lei He
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Guiling Zhang
- Department of Nuclear Medicine The Third Affiliated Hospital of Sun Yat‐sen University 600 Tianhe Road Guangzhou Guangdong 510630 China
| | - Zihao Chen
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Chuanggui Weng
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Sijin Cheng
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Ju Jiao
- Department of Nuclear Medicine The Third Affiliated Hospital of Sun Yat‐sen University 600 Tianhe Road Guangzhou Guangdong 510630 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Limin Rong
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| |
Collapse
|
4
|
Dietz VA, Roberts N, Knox K, Moore S, Pitonak M, Barr C, Centeno J, Leininger S, New KC, Nowell P, Rodreick M, Geoffroy CG, Stampas A, Dulin JN. Fighting for recovery on multiple fronts: The past, present, and future of clinical trials for spinal cord injury. Front Cell Neurosci 2022; 16:977679. [PMID: 36212690 PMCID: PMC9533868 DOI: 10.3389/fncel.2022.977679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Through many decades of preclinical research, great progress has been achieved in understanding the complex nature of spinal cord injury (SCI). Preclinical research efforts have guided and shaped clinical trials, which are growing in number by the year. Currently, 1,149 clinical trials focused on improving outcomes after SCI are registered in the U.S. National Library of Medicine at ClinicalTrials.gov. We conducted a systematic analysis of these SCI clinical trials, using publicly accessible data downloaded from ClinicalTrials.gov. After extracting all available data for these trials, we categorized each trial according to the types of interventions being tested and the types of outcomes assessed. We then evaluated clinical trial characteristics, both globally and by year, in order to understand the areas of growth and change over time. With regard to clinical trial attributes, we found that most trials have low enrollment, only test single interventions, and have limited numbers of primary outcomes. Some gaps in reporting are apparent; for instance, over 75% of clinical trials with "Completed" status do not have results posted, and the Phase of some trials is incorrectly classified as "Not applicable" despite testing a drug or biological compound. When analyzing trials based on types of interventions assessed, we identified the largest representation in trials testing rehab/training/exercise, neuromodulation, and behavioral modifications. Most highly represented primary outcomes include motor function of the upper and lower extremities, safety, and pain. The most highly represented secondary outcomes include quality of life and pain. Over the past 15 years, we identified increased representation of neuromodulation and rehabilitation trials, and decreased representation of drug trials. Overall, the number of new clinical trials initiated each year continues to grow, signifying a hopeful future for the clinical treatment of SCI. Together, our work provides a comprehensive glimpse into the past, present, and future of SCI clinical trials, and suggests areas for improvement in clinical trial reporting.
Collapse
Affiliation(s)
- Valerie A. Dietz
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Nolan Roberts
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Katelyn Knox
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Sherilynne Moore
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Pitonak
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Chris Barr
- Unite 2 Fight Paralysis, Minneapolis, MN, United States
| | - Jesus Centeno
- Unite 2 Fight Paralysis, Minneapolis, MN, United States
| | | | - Kent C. New
- Unite 2 Fight Paralysis, Minneapolis, MN, United States
| | - Peter Nowell
- Unite 2 Fight Paralysis, Minneapolis, MN, United States
| | | | - Cedric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Suzuki H, Imajo Y, Funaba M, Nishida N, Sakamoto T, Sakai T. Current Concepts of Neural Stem/Progenitor Cell Therapy for Chronic Spinal Cord Injury. Front Cell Neurosci 2022; 15:794692. [PMID: 35185471 PMCID: PMC8850278 DOI: 10.3389/fncel.2021.794692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a devastating condition that results in major neurological deficits and social burden. It continues to be managed symptomatically, and no real therapeutic strategies have been devised for its treatment. Neural stem/neural progenitor cells (NSCs/NPCs) being used for the treatment of chronic SCI in experimental SCI models can not only replace the lost cells and remyelinate axons in the injury site but also support their growth and provide neuroprotective factors. Currently, several clinical studies using NSCs/NPCs are underway worldwide. NSCs/NPCs also have the potential to differentiate into all three neuroglial lineages to regenerate neural circuits, demyelinate denuded axons, and provide trophic support to endogenous cells. This article explains the challenging pathophysiology of chronic SCI and discusses key NSC/NPC-based techniques having the greatest potential for translation over the next decade.
Collapse
|
6
|
Pang QM, Chen SY, Xu QJ, Fu SP, Yang YC, Zou WH, Zhang M, Liu J, Wan WH, Peng JC, Zhang T. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol 2021; 12:751021. [PMID: 34925326 PMCID: PMC8674561 DOI: 10.3389/fimmu.2021.751021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow. Over the past few decades, studies have found that the interaction between immune cells at the damaged site results in a robust and persistent inflammatory response. Current therapy strategies focus primarily on the inhibition of subacute and chronic neuroinflammation after the acute inflammatory response was executed. Growing evidences have documented that mesenchymal stem cells (MSCs) engraftment can be served as a promising cell therapy for SCI. Numerous studies have shown that MSCs transplantation can inhibit the excessive glial scar formation as well as inflammatory response, thereby facilitating the anatomical and functional recovery. Here, we will review the effects of inflammatory response and glial scar formation in spinal cord injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation after SCI will be reviewed as well.
Collapse
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi-Jing Xu
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Chun Yang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wang-Hui Zou
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Chen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
8
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
9
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnol Bioeng 2021; 118:2609-2625. [PMID: 33835500 DOI: 10.1002/bit.27781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.
Collapse
Affiliation(s)
- Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Munsell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sydney J Boyd
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|