1
|
Ceci R, Maldini M, La Rosa P, Sireno L, Antinozzi C, Olson ME, Dimauro I, Duranti G. The Effect of Moringa oleifera Leaf Extract on C2C12 Myoblast Proliferation and Redox Status Under Oxidative Insult. Antioxidants (Basel) 2024; 13:1460. [PMID: 39765789 PMCID: PMC11672862 DOI: 10.3390/antiox13121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Skeletal muscle tissue can regenerate after damage through the action of satellite cells, which proliferate as myoblasts when activated. Oxidative stress, marked by high rates of reactive oxygen species (e.g., hydrogen peroxide, H2O2), impairs this process by increasing myoblast cell death. Moringa oleifera leaf extract (MOLE), known for its antioxidant properties, was tested for its protective effects on C2C12 myoblasts under oxidative stress. We assessed MOLE's impact on total antioxidant capacity (TAC), glutathione homeostasis (GSH/GSSG), cell viability, and wound recovery. The metabolomic analysis of MOLE using an LC-MSMS ZenoTOF 7600 mass spectrometry system identified key compounds, including peculiar glucosinolates (42.1%) and flavonoids (18.8%), as well as phenolic acids (4.5%) and other significant metabolites (34.6%; among them, amino acids, vitamins, and fatty acids). H2O2 disrupted myoblast redox balance and caused cell death, but MOLE treatment restored the GSH/GSSG ratio, improved TAC, and increased cell viability. Additionally, MOLE promoted faster wound closure in myoblasts exposed to H2O2. These findings suggest that MOLE can protect C2C12 myoblasts by restoring redox balance and enhancing recovery under oxidative stress.
Collapse
Affiliation(s)
- Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy
| | | | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy;
| | - Laura Sireno
- Laboratory of Biology and Human Genetics, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (L.S.); (I.D.)
| | - Cristina Antinozzi
- Laboratory of Endocrinology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de CU S/N, Mexico City 04510, Mexico;
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetics, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (L.S.); (I.D.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy
| |
Collapse
|
2
|
Vongvivitpatana TS, Nambiar AM. A Low Forced Vital Capacity (FVC)/Diffusing Capacity of the Lung for Carbon Monoxide (DLCO) Ratio Increases Clinical Suspicion for Fibrotic Hypersensitivity Pneumonitis (FHP) Over Idiopathic Pulmonary Fibrosis (IPF). Cureus 2024; 16:e73008. [PMID: 39634966 PMCID: PMC11617056 DOI: 10.7759/cureus.73008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 12/07/2024] Open
Abstract
Background and objective Fibrotic Hypersensitivity Pneumonitis (FHP) and idiopathic pulmonary fibrosis (IPF) are interstitial lung diseases (ILDs) that are challenging to differentiate with prognostic and therapeutic implications. Clinical observations suggest that patients with FHP may have a lower baseline ratio of forced vital capacity (FVC) to the diffusing capacity of the lung for carbon monoxide (DLCO), or FVC/DLCO (F/D) ratio, than patients with IPF. In light of this, we aimed to determine whether patients with FHP have a significantly lower baseline F/D ratio than patients with IPF. Methods A retrospective chart review was performed at a single academic ILD center. Patients with a probable or definite diagnosis of FHP or IPF were considered for inclusion, while patients with poor-quality pulmonary function tests (PFTs) were excluded. The data collected included demographics, diagnosis modality, FVC and DLCO values within six months of diagnosis, as well as hemoglobin levels within three months of PFTs. Baseline F/D ratios were calculated using each patient's FVC percentage of predicted value divided by the DLCO percentage of predicted value adjusted for hemoglobin when available. One-tailed independent two-sample T-tests were performed. Results Eighty-nine patients met the inclusion criteria: 39 (44%) with FHP and 50 (56%) with IPF. The mean baseline F/D ratio was significantly lower for patients with FHP (M = 1.24, 95% CI: 1.14, 1.33) than for patients with IPF (M = 1.44, 95% CI: 1.31, 1.57, T(87) = 2.23, p = 0.014). A secondary analysis excluding patients with pulmonary hypertension and resting hypoxemia was performed, yielding 72 patients: 32 (44%) with FHP and 40 (56%) with IPF. The mean baseline F/D ratio was significantly lower for patients with FHP (M = 1.22, 95% CI: 1.12, 1.31) compared to patients with IPF (M = 1.37, 95% CI: 1.27, 1.46, T (70) = 2.37, p = 0.01). Conclusions In patients with probable to definite FHP versus IPF, the baseline F/D ratio was significantly lower in patients with FHP, even after excluding patients with coexisting pulmonary hypertension and resting hypoxemia. A lower baseline F/D ratio may be a novel, clinic-ready index to heighten clinical suspicion for FHP compared to IPF. Further larger prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Tannam S Vongvivitpatana
- Internal Medicine, University of Colorado, Denver, USA
- Internal Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Anoop M Nambiar
- Medicine/Pulmonary Disease, University of Texas Health Science Center at San Antonio, San Antonio, USA
- Internal Medicine/Pulmonary Disease, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, USA
| |
Collapse
|
3
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
4
|
Yoshizaki H, Kawaharada R, Tsutsumi S, Okami H, Toriumi A, Miyata E, Nakamura A. Unveiling the Threat of Maternal Advanced Glycation End Products to Fetal Muscle: Palmitoleic Acid to the Rescue. Nutrients 2024; 16:1898. [PMID: 38931253 PMCID: PMC11207069 DOI: 10.3390/nu16121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.
Collapse
Affiliation(s)
- Hitomi Yoshizaki
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo 113-8602, Japan;
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Saki Tsutsumi
- Department of Neurophysiology & Neural Repair, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Akiyo Toriumi
- Department of Public Health, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Eri Miyata
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| |
Collapse
|
5
|
Fernandes AC, Polizel GHG, Cracco RC, Cançado FACQ, Baldin GC, Poleti MD, Ferraz JBS, Santana MHDA. Metabolomics Changes in Meat and Subcutaneous Fat of Male Cattle Submitted to Fetal Programming. Metabolites 2023; 14:9. [PMID: 38248812 PMCID: PMC10819762 DOI: 10.3390/metabo14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
This study investigated changes in meat and subcutaneous fat metabolomes and possible metabolic pathways related to prenatal nutrition in beef cattle. For this purpose, 18 Nellore bulls were used for meat sampling and 15 for fat sampling. The nutritional treatments during the gestation were: NP-not programmed or control, without protein-energy supplementation; PP-partially programmed, with protein-energy supplementation (0.3% of body weight (BW)) only in the final third of pregnancy; and FP-full programming, with protein-energy supplementation (0.3% of BW) during the entire pregnancy. The meat and fat samples were collected individually 24 h after slaughter, and the metabolites were extracted using a combination of chemical reagents and mechanical processes and subsequently quantified using liquid chromatography or flow injection coupled to mass spectrometry. The data obtained were submitted to principal component analysis (PCA), analysis of variance (ANOVA), and functional enrichment analysis, with a significance level of 5%. The PCA showed an overlap between the treatments for both meat and fat. In meat, 25 metabolites were statistically different between treatments (p ≤ 0.05), belonging to four classes (glycerophospholipids, amino acids, sphingolipids, and biogenic amine). In fat, 10 significant metabolites (p ≤ 0.05) were obtained in two classes (phosphatidylcholine and lysophosphatidylcholine). The functional enrichment analysis showed alterations in the aminoacyl-tRNA pathway in meat (p = 0.030); however, there was no pathway enriched for fat. Fetal programming influenced the meat and fat metabolomes and the aminoacyl-tRNA metabolic pathway, which is an important candidate for the biological process linked to meat quality and related to fetal programming in beef cattle.
Collapse
Affiliation(s)
- Arícia Christofaro Fernandes
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| | - Guilherme Henrique Gebim Polizel
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| | - Roberta Cavalcante Cracco
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| | - Fernando Augusto Correia Queiroz Cançado
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| | - Geovana Camila Baldin
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.D.P.); (J.B.S.F.)
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.D.P.); (J.B.S.F.)
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (G.H.G.P.); (M.H.d.A.S.)
| |
Collapse
|
6
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
7
|
Yu B, Cai Z, Liu J, Zhao W, Fu X, Gu Y, Zhang J. Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle. Front Physiol 2023; 14:1199311. [PMID: 37265843 PMCID: PMC10229883 DOI: 10.3389/fphys.2023.1199311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
The inosine monophosphate (IMP) content in chicken meat is closely related to muscle quality and is an important factor affecting meat flavor. However, the molecular regulatory mechanisms underlying the IMP-specific deposition in muscle remain unclear. This study performed transcriptome analysis of muscle tissues from different parts, feeding methods, sexes, and breeds of 180-day-old Jingyuan chickens, combined with differential expression and weighted gene co-expression network analysis (WGCNA), to identify the functional genes that regulate IMP deposition. Out of the four comparison groups, 1,775, 409, 102, and 60 differentially expressed genes (DEGs) were identified, of which PDHA2, ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 may be involved in the anabolic process of muscle IMP in the form of energy metabolism or amino acid metabolism. WGCNA identified 11 biofunctional modules associated with IMP deposition. The brown, midnight blue, red, and yellow modules were strongly correlated with IMP and cooking loss (p < 0.05). Functional enrichment analysis showed that glycolysis/gluconeogenesis, arginine and proline metabolism, and pyruvate metabolism, regulated by PYCR1, SMOX, and ACSS2, were necessary for muscle IMP-specific deposition. In addition, combined analyses of DEGs and four WGCNA modules identified TGIF1 and THBS1 as potential candidate genes affecting IMP deposition in muscle. This study explored the functional genes that regulate muscle development and IMP synthesis from multiple perspectives, providing an important theoretical basis for improving the meat quality and molecular breeding of Jingyuan chickens.
Collapse
|
8
|
Liu M, Lan Q, Yang L, Deng Q, Wei T, Zhao H, Peng P, Lin X, Chen Y, Ma H, Wei H, Yin Y. Genome-Wide Association Analysis Identifies Genomic Regions and Candidate Genes for Growth and Fatness Traits in Diannan Small-Ear (DSE) Pigs. Animals (Basel) 2023; 13:ani13091571. [PMID: 37174608 PMCID: PMC10177038 DOI: 10.3390/ani13091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the livestock industry, the growth and fatness traits are directly related to production efficiency and economic profits. As for Diannan small-ear (DSE) pigs, a unique indigenous breed, the genetic architecture of growth and fatness traits is still elusive. The aim of this study was to search the genetic loci and candidate genes associated with phenotypic traits in DSE pigs using GWAS based on the Geneseek Porcine 50K SNP Chip data. A total of 22,146 single nucleotide polymorphisms (SNPs) were detected in 265 DSE pigs and used for Genome-wide association studies (GWAS) analysis. Seven SNPs were found to be associated with back height, chest circumference, cannon bone circumference, and backfat thickness at the suggestive significance level. Based on gene annotation results, these seven SNPs were, respectively, mapped to the following candidate genes, VIPR2, SLC10A2, NUCKS1, MCT1, CHCHD3, SMOX, and GPR1, which are mainly involved with adipocyte differentiation, lipid metabolism, skeletal muscle development, and average daily weight gain. Our work offers novel insights into the genetic architecture of economically important traits in swine and may play an important role in breeding using molecular markers in the DSE breed.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuchun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoding Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuhan Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
9
|
Positive Correlation between Relative Concentration of Spermine to Spermidine in Whole Blood and Skeletal Muscle Mass Index: A Possible Indicator of Sarcopenia and Prognosis of Hemodialysis Patients. Biomedicines 2023; 11:biomedicines11030746. [PMID: 36979725 PMCID: PMC10045508 DOI: 10.3390/biomedicines11030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Several mechanisms strictly regulate polyamine concentration, and blood polyamines are excreted in urine. This indicates polyamine accumulation in renal dysfunction, and studies have shown increased blood polyamine concentrations in patients with renal failure. Hemodialysis (HD) may compensate for polyamine excretion; however, little is known about polyamine excretion. We measured whole-blood polyamine levels in patients on HD and examined the relationship between polyamine concentrations and indicators associated with health status. Study participants were 59 hemodialysis patients (median age: 70.0 years) at Minami-Uonuma City Hospital and 26 healthy volunteers (median age: 44.5 years). Whole-blood spermidine levels were higher and spermine/spermidine ratio (SPM/SPD) was lower in hemodialysis patients. Hemodialysis showed SPD efflux into the dialysate; however, blood polyamine levels were not altered by hemodialysis and appeared to be minimally excreted. The skeletal muscle mass index (SMI), which was positively correlated with hand grip strength and serum albumin level, was positively correlated with SPM/SPD. Given that sarcopenia and low serum albumin levels are reported risk factors for poor prognosis in HD patients, whole blood SPM/SPD in hemodialysis patients may be a new indicator of the prognosis and health status of HD patients.
Collapse
|
10
|
Sarcopenia phenotype and impaired muscle function in male mice with fast-twitch muscle-specific knockout of the androgen receptor. Proc Natl Acad Sci U S A 2023; 120:e2218032120. [PMID: 36669097 PMCID: PMC9942915 DOI: 10.1073/pnas.2218032120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sarcopenia is distinct from normal muscle atrophy in that it is closely related to a shift in the muscle fiber type. Deficiency of the anabolic action of androgen on skeletal muscles is associated with sarcopenia; however, the function of the androgen receptor (AR) pathway in sarcopenia remains poorly understood. We generated a mouse model (fast-twitch muscle-specific AR knockout [fmARKO] mice) in which the AR was selectively deleted in the fast-twitch muscle fibers. In young male mice, the deletion caused no change in muscle mass, but it reduced muscle strength and fatigue resistance and induced a shift in the soleus muscles from fast-twitch fibers to slow-twitch fibers (14% increase, P = 0.02). After middle age, with the control mice, the male fmARKO mice showed much less muscle function, accompanied by lower hindlimb muscle mass; this phenotype was similar to the progression of sarcopenia. The bone mineral density of the femur was significantly reduced in the fmARKO mice, indicating possible osteosarcopenia. Microarray and gene ontology analyses revealed that in male fmARKO mice, there was downregulation of polyamine biosynthesis-related geneswhich was confirmed by liquid chromatography-tandem mass spectrometry assay and the primary cultured myofibers. None of the AR deletion-related phenotypes were observed in female fmARKO mice. Our findings showed that the AR pathway had essential muscle type- and sex-specific roles in the differentiation toward fast-twitch fibers and in the maintenance of muscle composition and function. The AR in fast-twitch muscles was the dominant regulator of muscle fiber-type composition and muscle function, including the muscle-bone relationship.
Collapse
|
11
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
12
|
Orrù S, Imperlini E, Vitucci D, Caterino M, Mandola A, Randers MB, Schmidt JF, Hagman M, Andersen TR, Krustrup P, Ruoppolo M, Buono P, Mancini A. Insight into the Molecular Signature of Skeletal Muscle Characterizing Lifelong Football Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15835. [PMID: 36497910 PMCID: PMC9740844 DOI: 10.3390/ijerph192315835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Aging and sedentary behavior are independent risk factors for non-communicable diseases. An active lifestyle and structured physical activity are positively associated with a healthier quality of life in the elderly. Here, we explored the proteomic/metabolomic muscular signature induced by lifelong football training associated with successful aging. METHODS The study was performed on nine lifelong football players (67.3 ± 2.8 yrs) and nine aged-matched untrained subjects. We performed a proteomic/metabolomic approach on V. lateralis muscle biopsies; the obtained data were analyzed by means of different bioinformatic tools. RESULTS Our results indicated that lifelong football training is able to enhance the muscles' oxidative capacity in the elderly by promoting fatty acids as preferential energetic substrates and hence determining a healthier body composition and metabolic profile; furthermore, we showed that the total polyamine content is higher in lifelong football players' muscle, enforcing the involvement of polyamines in muscle growth and hypertrophy. CONCLUSIONS Lifelong football training, as a structured physical activity, significantly influences the expression of the proteins and metabolites involved in oxidative metabolism and muscle hypertrophy associated with successful aging.
Collapse
Affiliation(s)
- Stefania Orrù
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Marianna Caterino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Annalisa Mandola
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Morten Bredsgaard Randers
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Jakob Friis Schmidt
- Section for Anaesthesia for ENT, Head Neck & Maxillofacial Surgery and Ortopedi, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marie Hagman
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Thomas Rostgaard Andersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter EX1 2LU, UK
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, 5230 Odense, Denmark
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Annamaria Mancini
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| |
Collapse
|
13
|
Kang J, Kim JY, Jung Y, Kim SU, Lee EY, Cho JY. Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites 2022; 12:1004. [PMID: 36295908 PMCID: PMC9611268 DOI: 10.3390/metabo12101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy. We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum samples and to explore the metabolomic signature in tissue samples from a mouse model. We obtained serum samples from IIM patients, ankylosing spondylitis (AS) patients, healthy volunteers and muscle tissue samples from IIM murine model. All samples were subjected to a targeted metabolomic approach with various statistical analyses on serum and tissue samples to identify metabolic alterations. Three machine learning methods, such as logistic regression (LR), support vector machine (SVM), and random forest (RF), were applied to build prediction models. A set of 7 predictive metabolites was calculated using backward stepwise selection, and the model was evaluated within 5-fold cross-validation by using three machine algorithms. The model produced an area under the receiver operating characteristic curve values of 0.955 (LR), 0.908 (RF) and 0.918 (SVM). A total of 68 metabolites were significantly changed in mouse tissue. Notably, the most influential pathways contributing to the inflammation of muscle were the polyamine pathway and the beta-alanine pathway. Our metabolomic approach offers the potential biomarkers of IIM and reveals pathologically relevant metabolic pathways that are associated with IIM.
Collapse
Affiliation(s)
- Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeong Yeon Kim
- Division of Cellular Genomics, GENOME INSIGHT Technologies, Seoul 06735, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youjin Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul Metropolitan Seoul Medical Center, Seoul 02053, Korea
| | - Seon Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
The Impact of Spermidine on C2C12 Myoblasts Proliferation, Redox Status and Polyamines Metabolism under H2O2 Exposure. Int J Mol Sci 2022; 23:ijms231910986. [PMID: 36232289 PMCID: PMC9569770 DOI: 10.3390/ijms231910986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts’ cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts’ viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.
Collapse
|
15
|
Plasma Polyamines Decrease in Patients with Obstructive Cholecystitis. LIVERS 2022. [DOI: 10.3390/livers2030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (PAs), endogenous metabolites with a wide range of biological activities, are synthesized at a high rate in liver supporting hepatocyte proliferation and survival. The liver appears as an important regulator of plasma PAs; however, the perspective to exploit plasma PA measurements as indicators for liver function was not explored. This study aimed to evaluate the value of the plasma levels of PAs as a biomarker of pathological changes in the liver in patients with obstructive cholecystitis. The levels of polyamines and their acetylated forms were measured using HPLC/UV in the plasma of patients with obstructive cholecystitis and in healthy subjects. PA turnover was assessed by the ratio between an acetylated form of PA and PA. An effect of diet preference of cheese or meat, the major exogenous sources of PAs, smoking, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in anamnesis was also evaluated in healthy subjects. We found that the plasma levels of spermine and acetylated spermidine decreased in patients with obstructive cholecystitis without a concurring increase in the total plasma bilirubin and amylase levels. The turnover of spermine and spermidine was also changed, suggesting a decrease in the rate of PA degradation in the liver. In healthy subjects, the PA levels tended to mirror chronic smoking and recent SARS-CoV-2 infection but were not relevant to diet factors. A number of observations indicated the role of physical exercise in the regulation of the plasma pool of PA. The decrease in plasma PA levels and index of PA turnover in the cholestasis syndrome indicate the liver’s metabolic function reduction. A conceivable effect of lung-related conditions on plasma PA, while indicating low specificity, nonetheless, speaks favorably about the high sensitivity of plasma PA measurement as an early diagnostic test in the clinic.
Collapse
|
16
|
McKenna CF, Salvador AF, Keeble AR, Khan NA, De Lisio M, Konopka AR, Paluska SA, Burd NA. Muscle strength after resistance training correlates to mediators of muscle mass and mitochondrial respiration in middle-aged adults. J Appl Physiol (1985) 2022; 133:572-584. [PMID: 35834627 DOI: 10.1152/japplphysiol.00186.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle aging is a multi-dimensional pathology of atrophy, reduced strength, and oxidative damage. While some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined. In an exploratory investigation, we examined how strength gains with resistance training relate to regulators of both muscle mass and oxidative function in middle-aged adults. Forty-one middle-aged adults (18M, 23F; 50±7y; 27.8±3.7kg/m2; mean±SD) participated in a 10-week resistance training intervention. Muscle biopsies and plasma were sampled at baseline and post-intervention. High-resolution fluo-respirometry was performed on a subset of muscle tissue. Apelin signaling (plasma apelin, P=0.002; Apln mRNA, P<0.001; apelin receptor mRNA Aplnr, P=0.001) increased with resistance training. Muscle Vdr mRNA (P=0.007) and Smox mRNA (P=0.027) were also upregulated after the intervention. Mitochondrial respiratory capacity increased (Vmax, oxidative phosphorylation, and uncoupled electron transport system, P<0.050), yet there were no changes in ADP sensitivity (Km P=0.579), hydrogen peroxide emission (P=0.469), nor transcriptional signals for mitochondrial biogenesis (nuclear respiratory factor 2, Gapba P=0.766) and mitofusion (mitochondrial dynamin like GTPase, Opa1 P=0.072). Muscular strength with resistance training positively correlated to Apln, Aplnr, Vdr, and Smox transcriptional adaptations, as well as mitochondrial respiratory capacity (unadjusted P<0.050, r=0.400-0.781). Further research is required to understand the interrelationships of these targets with aged muscle phenotype.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Amadeo F Salvador
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Alexander R Keeble
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Michael De Lisio
- School of Human Kinetics and Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam R Konopka
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 2021; 4:1264. [PMID: 34737380 PMCID: PMC8569015 DOI: 10.1038/s42003-021-02790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles. Baba et al. analyzed the transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes and identified Pfkfb3 and Pdk4 as differentially regulated genes between males and diestrus females. The authors found that Pfkfb3 and Pdk4 may act as metabolic switches, showed male-enriched and estradiol-enhanced expression, respectively and contributed to sexually dimorphic metabolism.
Collapse
|
19
|
Muroya S, Zhang Y, Kinoshita A, Otomaru K, Oshima K, Gotoh Y, Oshima I, Sano M, Roh S, Oe M, Ojima K, Gotoh T. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf Muscle. Metabolites 2021; 11:metabo11090582. [PMID: 34564398 PMCID: PMC8465837 DOI: 10.3390/metabo11090582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
To elucidate the mechanisms underlying maternal undernutrition (MUN)-induced fetal skeletal muscle growth impairment in cattle, the longissimus thoracis muscle of Japanese Black fetal calves at 8.5 months in utero was analyzed by an integrative approach with metabolomics and transcriptomics. The pregnant cows were fed on 60% (low-nutrition, LN) or 120% (high-nutrition, HN) of their overall nutritional requirement during gestation. MUN markedly decreased the bodyweight and muscle weight of the fetus. The levels of amino acids (AAs) and arginine-related metabolites including glutamine, gamma-aminobutyric acid (GABA), and putrescine were higher in the LN group than those in the HN group. Metabolite set enrichment analysis revealed that the highly different metabolites were associated with the metabolic pathways of pyrimidine, glutathione, and AAs such as arginine and glutamate, suggesting that MUN resulted in AA accumulation rather than protein accumulation. The mRNA expression levels of energy metabolism-associated genes, such as PRKAA1, ANGPTL4, APLNR, CPT1B, NOS2, NOS3, UCP2, and glycolytic genes were lower in the LN group than in the HN group. The gene ontology/pathway analysis revealed that the downregulated genes in the LN group were associated with glucose metabolism, angiogenesis, HIF-1 signaling, PI3K-Akt signaling, pentose phosphate, and insulin signaling pathways. Thus, MUN altered the levels of AAs and expression of genes associated with energy expenditure, glucose homeostasis, and angiogenesis in the fetal muscle.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Aoi Kinoshita
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Yuji Gotoh
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Mika Oe
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
20
|
Reinoso-Sánchez JF, Baroli G, Duranti G, Scaricamazza S, Sabatini S, Valle C, Morlando M, Casero RA, Bozzoni I, Mariottini P, Ceci R, Cervelli M. Emerging Role for Linear and Circular Spermine Oxidase RNAs in Skeletal Muscle Physiopathology. Int J Mol Sci 2020; 21:E8227. [PMID: 33153123 PMCID: PMC7663755 DOI: 10.3390/ijms21218227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/genetics
- Amyotrophic Lateral Sclerosis/metabolism
- Amyotrophic Lateral Sclerosis/pathology
- Animals
- Cell Differentiation/genetics
- Cells, Cultured
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Oxidoreductases Acting on CH-NH Group Donors/genetics
- Oxidoreductases Acting on CH-NH Group Donors/physiology
- RNA, Circular/physiology
- RNA, Messenger/physiology
- RNA, Untranslated/physiology
- RNA-Binding Protein FUS/genetics
- Superoxide Dismutase-1/genetics
- Polyamine Oxidase
Collapse
Affiliation(s)
- Jonathan Fernando Reinoso-Sánchez
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Giulia Baroli
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | | | - Stefania Sabatini
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy;
| | - Robert Anthony Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Irene Bozzoni
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “La Sapienza”, 00185 Rome, Italy;
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Paolo Mariottini
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | - Manuela Cervelli
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
21
|
Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL, Smith K, Gallagher IJ, Atherton PJ. Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 2020; 12:12517-12533. [PMID: 32580166 PMCID: PMC7377844 DOI: 10.18632/aging.103513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise metabolite features most informative in stratifying older age, with potential biological context examined using the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites down to subnetworks of age important metabolites. Identified networks included the common age-associated metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and could therefore be utilised in future studies to investigate the links between age predictive metabolites and common biomarkers linked to health and disease across age.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Giovanny Rodriguez-Blanco
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Warwick B Dunn
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Iain J Gallagher
- University of Stirling, Faculty of Health Sciences and Sport, Stirling, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
22
|
Wang J, Li S, Wang J, Wu F, Chen Y, Zhang H, Guo Y, Lin Y, Li L, Yu X, Liu T, Zhao Y. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging (Albany NY) 2020; 12:650-671. [PMID: 31907336 PMCID: PMC6977682 DOI: 10.18632/aging.102647] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
Polyamines have been shown to delay cellular and organismal aging and to provide cardiovascular protection in humans. Because age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function, we explored the ability of spermidine (SPD), a major mammalian polyamine, to attenuate cardiac aging through activation of mitochondrial biogenesis. Cardiac polyamine levels were reduced in aged (24-month-old) rats. Six-week SPD supplementation restored cardiac polyamine content, preserved myocardial ultrastructure, and inhibited mitochondrial dysfunction. Immunoblotting showed that ornithine decarboxylase (ODC) and SPD/spermine N1-acetyltransferase (SSAT) were downregulated and upregulated, respectively, in the myocardium of older rats. These changes were paralleled by age-dependent downregulation of components of the sirtuin-1/peroxisome proliferator-activated receptor gamma coactivator alpha (SIRT1/PGC-1α) signaling pathway, an important regulator of mitochondrial biogenesis. SPD administration increased SIRT1, PGC-1α, nuclear respiratory factors 1 and 2 (NRF1, NRF2), and mitochondrial transcription factor A (TFAM) expression; decreased ROS production; and improved OXPHOS performance in senescent (H2O2-treated) cardiomyocytes. Inhibition of polyamine biosynthesis or SIRT1 activity abolished these effects. PGC-1α knockdown experiments confirmed that SPD activated mitochondrial biogenesis through SIRT1-mediated deacetylation of PGC-1α. These data provide new insight into the antiaging effects of SPD, and suggest potential applicability to protect against deterioration of cardiac function with aging.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Medical Technology, Beijing Health Vocational College, Beijing, China
| | - Shaoqi Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ju Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Feixiang Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yuhan Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Guo
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Lin
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lingxu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ting Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
23
|
Kim SH, Yi SJ, Lee H, Kim JH, Oh MJ, Song EJ, Kim K, Jhun BH. β 2-Adrenergic receptor (β 2-AR) agonist formoterol suppresses differentiation of L6 myogenic cells by blocking PI3K-AKT pathway. Anim Cells Syst (Seoul) 2019; 23:18-25. [PMID: 30834155 PMCID: PMC6394304 DOI: 10.1080/19768354.2018.1561516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
β2-Adrenergic receptor (β2-AR) is implicated in muscle metabolic activities such as glycogen metabolism, glucose uptake, lipolysis and muscle growth. However, the functional role of β2-AR in the differentiation of skeletal muscle is largely unknown. Here, we examined the functional role of β2-AR in L6 myoblast differentiation using the long-term-acting β2-AR-specific agonist formoterol. We observed that formoterol treatment strongly suppressed L6 myoblast differentiation and the expression of myosin heavy chain (MHC) in a dose- and time-dependent manner. Showing that both long-acting agonist (formoterol) and short-acting agonist (terbutaline) inhibited the induction of MHC protein, whereas β2-AR antagonist (ICI-118,551) upregulated MHC expression, we clearly demonstrated that β2-AR is involved in L6 myoblast differentiation. Furthermore, our pharmacological inhibition study revealed that the PI3K–AKT pathway is the main signaling pathway for myotube formation. Formoterol inhibited the activation of PI3K–AKT signaling, but not that of ERK signaling. Moreover, formoterol selectively inhibited AKT activation by IGF-I, but not by insulin. Collectively, our findings reveal a previously undocumented role of β2-AR activation in modulating the differentiation of L6 myoblasts.
Collapse
Affiliation(s)
- So-Hyeon Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Eun-Ju Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|