1
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Talukder ME, Talukder MR, Pervez MN, Song H, Naddeo V. Bead-Containing Superhydrophobic Nanofiber Membrane for Membrane Distillation. MEMBRANES 2024; 14:120. [PMID: 38921487 PMCID: PMC11206126 DOI: 10.3390/membranes14060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
This study introduces an innovative approach to enhancing membrane distillation (MD) performance by developing bead-containing superhydrophobic sulfonated polyethersulfone (SPES) nanofibers with S-MWCNTs. By leveraging SPES's inherent hydrophobicity and thermal stability, combined with a nanostructured fibrous configuration, we engineered beads designed to optimize the MD process for water purification applications. Here, oxidized hydrophobic S-MWCNTs were dispersed in a SPES solution at concentrations of 0.5% and 1.0% by weight. These bead membranes are fabricated using a novel electrospinning technique, followed by a post-treatment with the hydrophobic polyfluorinated grafting agent to augment nanofiber membrane surface properties, thereby achieving superhydrophobicity with a water contact angle (WCA) of 145 ± 2° and a higher surface roughness of 512 nm. The enhanced membrane demonstrated a water flux of 87.3 Lm-2 h-1 and achieved nearly 99% salt rejection efficiency at room temperature, using a 3 wt% sodium chloride (NaCl) solution as the feed. The results highlight the potential of superhydrophobic SPES nanofiber beads in revolutionizing MD technology, offering a scalable, efficient, and robust membrane for salt rejection.
Collapse
Affiliation(s)
- Md Eman Talukder
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Md. Romon Talukder
- Department of Chemistry, Government Saadat College, Tangail, Dhaka 1903, Bangladesh;
| | - Md. Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| | - Hongchen Song
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| |
Collapse
|
3
|
Sayed MM, Noby H, Zkria A, Mousa HM, Yoshitake T, ElKady M. Engineered eco-friendly composite membranes with superhydrophobic/hydrophilic dual-layer for DCMD system. CHEMOSPHERE 2024; 352:141468. [PMID: 38382717 DOI: 10.1016/j.chemosphere.2024.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Considerable advancements have been made in the development of hydrophobic membranes for membrane distillation (MD). Nonetheless, the environmentally responsible disposal of these membranes poses a critical concern due to their synthetic composition. Herein, an eco-friendly dual-layered biopolymer-based membrane was fabricated for water desalination. The membrane was electrospun from two bio-polymeric layers. The top hydrophobic layer comprises polycaprolactone (PCL) and the bottom hydrophilic layer from cellulose acetate (CA). Additionally, silica nanoparticles (SiO2 NPs) were electrosprayed onto the top layer of the dual-layered PCL/CA membrane to enhance the hydrophobicity. The desalination performance of the modified PCL-SiO2/CA membrane was compared with the unmodified PCL/CA membrane using a direct contact membrane distillation (DCMD) unit. Results revealed that silica remarkably improves membrane hydrophobicity. The modified PCL-SiO2/CA membrane demonstrated a significant increase in water contact angle of 152.4° compared to 119° for the unmodified membrane. In addition, PCL-SiO2/CA membrane has a smaller average pore size of 0.23 ± 0.16 μm and an exceptional liquid entry pressure of water (LEPw), which is 3.8 times higher than that of PCL/CA membrane. Moreover, PCL-SiO2/CA membrane achieved a durable permeate flux of 15.6 kg/m2.h, while PCL/CA membrane showed unstable permeate flux decreasing approximately from 25 to 12 kg/m2.h over the DCMD test time. Furthermore, the modified PCL-SiO2/CA membrane achieved a high salt rejection value of 99.97% compared to a low value of 86.2% for the PCL/CA membrane after 24 h continuous DCMD operation. In conclusion, the proposed modified PCL-SiO2/CA dual-layer biopolymeric-based membrane has considerable potential to be used as an environmentally friendly membrane for the MD process.
Collapse
Affiliation(s)
- Mostafa M Sayed
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt.
| | - H Noby
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Abdelrahman Zkria
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan; Department of Physics, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena, 83523, Egypt; Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, 85863, Luxor, Egypt
| | - Tsuyoshi Yoshitake
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Marwa ElKady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
4
|
Hou Y, Shah P, Constantoudis V, Gogolides E, Kappl M, Butt HJ. A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation. Nat Commun 2023; 14:6886. [PMID: 37898660 PMCID: PMC10613234 DOI: 10.1038/s41467-023-42204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023] Open
Abstract
Membrane distillation (MD) is an emerging desalination technology that exploits phase change to separate water vapor from saline based on low-grade energy. As MD membranes come into contact with saline for days or weeks during desalination, membrane pores have to be sufficiently small (typically <0.2 µm) to avoid saline wetting into the membrane. However, in order to achieve high distillation flux, the pore size should be large enough to maximize transmembrane vapor transfer. These conflicting requirements of pore geometry pose a challenge to membrane design and currently hinder broader applications of MD. To address this fundamental challenge, we developed a super liquid-repellent membrane with hierarchical porous structures by coating a polysiloxane nanofilament network on a commercial micro-porous polyethersulfone membrane matrix. The fluorine-free nanofilament coating effectively prevents membrane wetting under high hydrostatic pressure (>11.5 bar) without compromising vapor transport. With large inner micro-porous structures, the nanofilament-coated membrane improves the distillation flux by up to 60% over the widely used commercially available membranes, while showing excellent salt rejection and operating stability. Our approach will allow the fabrication of high-performance composite membranes with multi-scale porous structures that have wide-ranging applications beyond desalination, such as in cleaning wastewater.
Collapse
Affiliation(s)
- Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology NCSR Demokritos, 15341, Agia Paraskevi, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Nady N, Abdel Rehim MH, Badawy AA. Dye removal membrane from electrospun nanofibers of blended polybutylenesuccinate and sulphonated expanded polystyrene waste. Sci Rep 2023; 13:15455. [PMID: 37723280 PMCID: PMC10507098 DOI: 10.1038/s41598-023-42424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Polystyrene (PS) is a thermoplastic polymer used in food packaging and the manufacture of trays and cups, among other applications. In this work, the preparation of a membrane by electrospinning blended sulphonated expanded PS waste and polybutylenesuccinate (PBS) is described. The fiber quality is controlled by selecting the right polymers' ratios and solvents. Investigation of the structure of the produced membranes by Fourier transform infrared spectroscopy-attenuated total reflectance confirmed the successful sulphonation of expanded PS and the appearance of characteristic (PBS) bands in the prepared blends. Morphology study of the electrospun membranes using a scanning electron microscope revealed that the quality of the fibers is improved significantly by increasing the amount of PBS in the blend solution. Moreover, continuous and more homogenous fibers are produced by increasing the ratio of PBS to 2%. The efficiency of the prepared membranes in dye removal was tested using methylene blue. The effects of different parameters such as, pH, contact time, temperature, and dye concentration have been studied. Also, kinetic and adsorption isotherm models as well as the durability of the prepared membranes were investigated. The membrane prepared from PSS/1% PBS demonstrated the highest dye uptake (846 mol) with good regeneration efficiency. The adsorption process was found to be endothermic and fits the Freundlich isotherm and pseudo-second-order kinetic model. The values of activation energy for the adsorption process are 36.98, 30.70, and 43.40 kJ/mol over PSS, PSS/1% PBS and PSS/2% PBS, respectively.
Collapse
Affiliation(s)
- Norhan Nady
- Polymeric Material Research Department, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mona H Abdel Rehim
- Packaging Materials Department, National Research Center, Institute of Chemical Industries Research, 33 El Behooth St., Dokki Giza, Egypt.
| | - Abdelrahman A Badawy
- Physical Chemistry Department, National Research Centre, Advanced Materials Technology and Mineral Resources Research Institute, Giza, 12622, Egypt.
| |
Collapse
|
6
|
A novel UiO-66-NH2/graphene oxide composite thin membrane for retarding membrane wetting in membrane distillation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Chen L, Yin Z, Li F, Chen Z. Treatment of simulated saline brine water by membrane distillation process enhanced through alternating current electric field. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
9
|
Zhou W, Zhang X, Gong X, Ding M, Yu J, Zhang S, Ding B. Environmentally Friendly Polyamide Nanofiber Membranes with Interconnective Amphiphobic Channels for Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35287-35296. [PMID: 35866994 DOI: 10.1021/acsami.2c12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seawater desalination is a promising and sustainable solution to alleviate freshwater scarcity; however, most existing desalination membranes suffer from poor channel interconnectivity and toxic solvent processing and encounter a tradeoff dilemma of salt rejection and water flux. Herein, we report a unique and facile one-step green solvent/nonsolvent spinning methodology to assemble environmentally friendly polyamide nanofiber membranes with a precisely designed interconnective/stable channel structure and surface anti-wettability for seawater desalination. Direct electrospinning without any post-treatments via in situ introduction of fluorinated chemicals enables highly interconnective amphiphobic channels within polyamide membranes, and the incorporation of nonsolvent (diacetone alcohol) into polyamide/solvent (ethanol) spinning solutions endows the green alcohol-based polyamide membranes with a stable bonding structure and small pore size. The resultant green solvent/nonsolvent-spun polyamide nanofiber membranes show impressive liquid entry pressure (120.5 kPa) and vapor permeation (12.5 kg m-2 d-1), achieving robust seawater desalination performance with a salt rejection of 99.97% and permeate flux of 47.4 kg m-2 h-1. The facile one-step solvent/nonsolvent spinning strategy, highly interconnective amphiphobic channels, and green solvent-based environmental friendliness in this work can open opportunities for future polyamide membranes for practical applications in water purification.
Collapse
Affiliation(s)
- Wen Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Kumarage S, Munaweera I, Kottegoda N. A comprehensive review on electrospun nanohybrid membranes for wastewater treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:137-159. [PMID: 35186649 PMCID: PMC8822457 DOI: 10.3762/bjnano.13.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Electrospinning, being a versatile and straightforward method to produce nanofiber membranes, has shown significant advancement in recent years. On account of the unique properties such as high surface area, high porosity, mechanical strength, and controllable surface morphologies, electrospun nanofiber membranes have been found to have a great potential in many disciplines. Pure electrospun fiber mats modified with different techniques of surface modification and additive incorporation have exhibited enhanced properties compared to traditional membranes and are even better than the as-prepared electrospun membranes. In this review, we have summarized recently developed electrospun nanohybrids fabricated by the incorporation of functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been discussed. Finally, an outlook on the future research pathways to fill the gaps existing in water remediation have been suggested.
Collapse
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Centre for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
11
|
Vorobei AM, Zuev YI, Dyshin AA, Parenago OO, Kiselev MG. Dispersion of Single-Walled Carbon Nanotubes via Rapid Expansion of Supercritical Suspensions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. MEMBRANES 2021; 11:membranes11120988. [PMID: 34940489 PMCID: PMC8708787 DOI: 10.3390/membranes11120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
Application of the membrane distillation (MD) process for the treatment of high-salinity solutions contaminated with oil and surfactants represents an interesting area of research. Therefore, the aim of this study is to investigate the effect of low-concentration surfactants in oil-contaminated high-salinity solutions on the MD process efficiency. For this purpose, hydrophobic capillary polypropylene (PP) membranes were tested during the long-term MD studies. Baltic Sea water and concentrated NaCl solutions were used as a feed. The feed water was contaminated with oil collected from bilge water and sodium dodecyl sulphate (SDS). It has been demonstrated that PP membranes were non-wetted during the separation of pure NaCl solutions over 960 h of the module exploitation. The presence of oil (100–150 mg/L) in concentrated NaCl solutions caused the adsorption of oil on the membranes surface and a decrease in the permeate flux of 30%. In turn, the presence of SDS (1.5–2.5 mg/L) in the oil-contaminated high-salinity solutions slightly accelerated the phenomenon of membrane wetting. The partial pores’ wetting accelerated the internal scaling and affected degradation of the membrane’s structure. Undoubtedly, the results obtained in the present study may have important implications for understanding the effect of low-concentration SDS on MD process efficiency.
Collapse
|
13
|
Kim SH, Kang SW. Interconnected channels through polypropylene and cellulose acetate by utilizing lactic acid for stable separators. Chem Commun (Camb) 2021; 57:8965-8968. [PMID: 34486585 DOI: 10.1039/d1cc02955j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, an eco-friendly and inexpensive cellulose acetate (CA) separator was fabricated and a method of making a single film by combining a polypropylene (PP) film and cellulose was proposed. The CA solution was coated on the PP film with a doctor blade and water treatment was applied to the bonded polymer to create interconnected pores and completely bond the CA onto the PP. In addition, lactic acid was added to CA to induce a plasticizing effect for abundant pore formation. The binding was confirmed using FT-IR and SEM, and the pore size generated from the CA side was found to be less than 1 μm on average. TGA was used to measure the thermal stability of the connected polymers.
Collapse
Affiliation(s)
- So Hee Kim
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Sang Wook Kang
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea. .,Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
14
|
Elrasheedy A, Rabie M, El-Shazly AH, Bassyouni M, El-Moneim AA, El-Kady MF. Investigation of Different Membrane Porosities on the Permeate Flux of Direct Contact Membrane Distillation. KEY ENGINEERING MATERIALS 2021; 889:85-90. [DOI: 10.4028/www.scientific.net/kem.889.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the present study the surface morphology of electrospun fibers at different polystyrene (PS) solution concentration was studied by SEM imaging to determine the best PS solution concentration yielding continuous uniform beadles fibers. Contact angle measurements of the optimum fabricatedPS-18 membrane confirmed the super hydrophobic property of the membrane that exhibited a static water contact angle of 145o. Numerical investigation of the performance of PS-18 membrane at different membrane thicknesses and porosities on direct contact membrane distillation showed that increasing the membrane porosity increases the permeate flux considerably.
Collapse
Affiliation(s)
| | - Mohammed Rabie
- Egypt-Japan University of Science and Technology (E-JUST)
| | | | | | | | | |
Collapse
|
15
|
Ansari A, Kavousi S, Helfer F, Millar G, Thiel DV. An Improved Modelling Approach for the Comprehensive Study of Direct Contact Membrane Distillation. MEMBRANES 2021; 11:membranes11050308. [PMID: 33922337 PMCID: PMC8145701 DOI: 10.3390/membranes11050308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Direct Contact Membrane Distillation (DCMD) is a promising and feasible technology for water desalination. Most of the models used to simulate DCMD are one-dimensional and/or use a linear function of vapour pressure which relies on experimentally determined parameters. In this study, the model of DCMD using Nusselt correlations was improved by coupling the continuity, momentum, and energy equations to better capture the downstream alteration of flow field properties. A logarithmic function of vapour pressure, which is independent from experiments, was used. This allowed us to analyse DCMD with different membrane properties. The results of our developed model were in good agreement with the DCMD experimental results, with less than 7% deviation. System performance metrics, including water flux, temperature, and concentration polarisation coefficient and thermal efficiency, were analysed by varying inlet feed and permeate temperature, inlet velocity, inlet feed concentration, channel length. In addition, twenty-two commercial membranes were analysed to obtain a real vision on the influence of membrane characteristics on system performance metrics. The results showed that the feed temperature had the most significant effect on water flux and thermal efficiency. The increased feed temperature enhanced the water flux and thermal efficiency; however, it caused more concentration and temperature polarisation. On the other hand, the increased inlet velocity was found to provide increased water flux and reduced temperature and concertation polarisation as well. It was also found that the membrane properties, especially thickness and porosity, can affect the DCMD performance significantly. A two-fold increase of feed temperature increased the water flux and thermal efficiency, 10-fold and 27%, respectively; however, it caused an increase in temperature and concertation polarisation, at 48% and 34%, respectively. By increasing Reynolds number from 80 to 1600, the water flux, CPC, and TPC enhanced by 2.3-fold, 2%, and 21%, respectively. The increased feed concentration from 0 to 250 [g/L] caused a 26% reduction in water flux. To capture the downstream alteration of flow properties, it was shown that the ratio of inlet value to outlet value of system performance metrics decreased significantly throughout the module. Therefore, improvement over the conventional model is undeniable, as the new model can assist in achieving optimal operation conditions.
Collapse
Affiliation(s)
- Abolfazl Ansari
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (A.A.); (F.H.); (D.V.T.)
| | - Saman Kavousi
- Independent Researcher, Esteghlal Blvd., Shiraz 71757-43659, Iran;
| | - Fernanda Helfer
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (A.A.); (F.H.); (D.V.T.)
| | - Graeme Millar
- Institute for Future Environments, School of Mechanical, Medical & Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - David V. Thiel
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (A.A.); (F.H.); (D.V.T.)
| |
Collapse
|
16
|
Mushtaq R, Abbas MA, Mushtaq S, Ahmad NM, Khan NA, Khan AU, Hong W, Sadiq R, Jiang Z. Antifouling and Flux Enhancement of Reverse Osmosis Membrane by Grafting Poly (3-Sulfopropyl Methacrylate) Brushes. MEMBRANES 2021; 11:213. [PMID: 33803777 PMCID: PMC8003146 DOI: 10.3390/membranes11030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m-2 h-1 to 71.2 L m-2 h-1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification.
Collapse
Affiliation(s)
- Reema Mushtaq
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Muhammad Asad Abbas
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Shehla Mushtaq
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Niaz Ali Khan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| | - Asad U. Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Wu Hong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| | - Rehan Sadiq
- School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| |
Collapse
|
17
|
Preparation and Characterization of a Novel Poly(vinylidene fluoride-co-hexafluoropropylene)/Poly(ethersulfone) Blend Membrane Fabricated Using an Innovative Method of Mixing Electrospinning and Phase Inversion. Polymers (Basel) 2021; 13:polym13050790. [PMID: 33806655 PMCID: PMC7961782 DOI: 10.3390/polym13050790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, a novel polymeric membrane was innovated in terms of composition and preparation techniques. A blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PcH) and poly(ethersulfone) (PES) (18 wt.% total polymer concentration) was prepared using a N-methylpyrrolidone (NMP) and N, N-Dimethylformamide (DMF) solvents mixture, while Lithium chloride (0.05–0.5 wt.%) was used as an additive. The electrospinning and phase inversion techniques were used together to obtain a novel membrane structure. The prepared membranes were characterized using scanning electron microscope imaging, energy dispersive X-Ray, differential scanning calorimeter, thermogravimetric analysis, and Fourier transfer infrared spectroscopy-attenuated total reflectance analyses. Moreover, the static water contact angle, membrane thickness, porosity, surface roughness as well as water vapor permeability were determined. ImageJ software was used to estimate the average fiber diameter. Additionally, the effect of the change of PcH concentration and coagulation bath temperature on the properties of the fabricated membrane was studied. The novel developed membrane has shown a good efficiency in terms of properties and features, as a membrane suitable for membrane distillation (MD); a high porosity (84.4% ± 0.6), hydrophobic surface (136.39° ± 3.1 static water contact angle), and a water vapor permeability of around 4.37 × 10−5 g·m/m2·day·Pa were obtained. The prepared membrane can be compared to the MD membranes commercially available in terms of properties and economic value.
Collapse
|
18
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
19
|
Dong Y, Dai X, Zhao L, Gao L, Xie Z, Zhang J. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation. MEMBRANES 2021; 11:membranes11020122. [PMID: 33567617 PMCID: PMC7915881 DOI: 10.3390/membranes11020122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the transport phenomena in four common membrane distillation (MD) configurations and three popular modelling approaches are introduced. The mechanism of heat transfer on the feed side of all configurations are the same but are distinctive from each other from the membrane interface to the bulk permeate in each configuration. Based on the features of MD configurations, the mechanisms of mass and heat transfers for four configurations are reviewed together from the bulk feed to the membrane interface on the permeate but reviewed separately from the interface to the bulk permeate. Since the temperature polarisation coefficient cannot be used to quantify the driving force polarisation in Sweeping Gas MD and Vacuum MD, the rate of driving force polarisation is proposed in this paper. The three popular modelling approaches introduced are modelling by conventional methods, computational fluid dynamics (CFD) and response surface methodology (RSM), which are based on classic transport mechanism, computer science and mathematical statistics, respectively. The default assumptions, area for applications, advantages and disadvantages of those modelling approaches are summarised. Assessment and comparison were also conducted based on the review. Since there are only a couple of full-scale plants operating worldwide, the modelling of operational cost of MD was only briefly reviewed. Gaps and future studies were also proposed based on the current research trends, such as the emergence of new membranes, which possess the characteristics of selectivity, anti-wetting, multilayer and incorporation of inorganic particles.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Xiaodong Dai
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Lianyu Zhao
- YunFu (Foshan) R&D Center of Hydrogen Energy Standardization, Yunfu 527326, China;
| | - Li Gao
- South East Water Corporation, P.O. Box 2268, Seaford, VIC 3198, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia;
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence:
| |
Collapse
|
20
|
Elrasheedy A, Rabie M, El-Shazly A, Bassyouni M, Abdel-Hamid S, El Kady MF. Numerical Investigation of Fabricated MWCNTs/Polystyrene Nanofibrous Membrane for DCMD. Polymers (Basel) 2021; 13:polym13010160. [PMID: 33406737 PMCID: PMC7795322 DOI: 10.3390/polym13010160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of compositing multiwalled carbon nanotubes (MWCNTs) with polystyrene (PS) to fabricate nanofibrous membrane by electrospinning technique and comparing the direct contact membrane distillation (DCMD) performance of the blank and composite membranes is evaluated numerically. Surface morphology of both the pristine and the composite membrane was studied by SEM imaging while the average fiber diameter and average pore size were measured using ImageJ software. Static water contact angle and porosities were also determined for both membranes. Results showed significant enhancement in both the hydrophobicity and porosity of the composite membrane by increasing the static water contact angle from 145.4° for the pristine PS membrane to 155° for the PS/MWCNTs composite membrane while the porosity was increased by 28%. Simulation results showed that at any given feed inlet temperature, the PS/MWCNTs membrane have higher permeate flux and better overall system performance.
Collapse
Affiliation(s)
- Asmaa Elrasheedy
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - Mohammed Rabie
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Mechanical Power Engineering, Mansoura University, El-Mansoura 35516, Egypt
| | - Ahmed El-Shazly
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Chemical Engineering Department, Faculty of Engineering Department, Alexandria University, Alexandria 21544, Egypt
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, Zewail University of Science and Technology, City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - S.M.S. Abdel-Hamid
- Department of Chemical Engineering, the Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam City 3056, Egypt;
| | - Marwa F. El Kady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Polymeric Materials Research Department, City of Scientific Research and Technological Applications (SRTA-City), Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
21
|
Modification of PET Ion-Track Membranes by Silica Nanoparticles for Direct Contact Membrane Distillation of Salt Solutions. MEMBRANES 2020; 10:membranes10110322. [PMID: 33143326 PMCID: PMC7694013 DOI: 10.3390/membranes10110322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
The paper describes desalination by membrane distillation (MD) using ion-track membranes. Poly(ethylene terephthalate) (PET) ion-track membranes were hydrophobized by the immobilization of hydrophobic vinyl-silica nanoparticles (Si NPs). Si NPs were synthesized by the sol-gel method, and the addition of the surfactant led to the formation of NPs with average size of 40 nm. The thermal initiator fixed to the surface of membranes allowed attachment of triethoxyvinyl silane Si NPs at the membrane surface. To further increase hydrophobicity, ethoxy groups were fluorinated. The morphology and chemical structure of prepared membranes were characterized by SEM, FTIR, XPS spectroscopy, and a gas permeability test. Hydrophobic properties were evaluated by contact angle (CA) and liquid entry pressure (LEP) measurements. Membranes with CA 125–143° were tested in direct contact membrane distillation (DCMD) of 30 g/L saline solution. Membranes showed water fluxes from 2.2 to 15.4 kg/(m2·h) with salt rejection values of 93–99%.
Collapse
|
22
|
Zeitoun Z, El-Shazly AH, Nosier S, Elmarghany MR, Salem MS, Taha MM. Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment. MEMBRANES 2020; 10:membranes10100276. [PMID: 33049928 PMCID: PMC7601555 DOI: 10.3390/membranes10100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.
Collapse
Affiliation(s)
- Zeyad Zeitoun
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
| | - Ahmed H. El-Shazly
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-Just), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Shaaban Nosier
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
| | - Mohamed R. Elmarghany
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
- Mansoura University Nanotechnology Center, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.R.E.); (M.M.T.)
| | - Mohamed S. Salem
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
- Mansoura University Nanotechnology Center, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Taha
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
- Environmental Engineering Department, University of Science and Technology, Zewail City of Science and Technology, October Gardens, Giza 12578, Egypt
- Correspondence: (M.R.E.); (M.M.T.)
| |
Collapse
|
23
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
24
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|