1
|
Lirio Piñar JA, Calvo J, Ahualli S. Model and simulations of the effects of polyelectrolyte-coated electrodes in capacitive deionization. Phys Rev E 2024; 110:034610. [PMID: 39425369 DOI: 10.1103/physreve.110.034610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/16/2024] [Indexed: 10/21/2024]
Abstract
The problem of ion transport in porous media is fundamental to many practical applications such as capacitive deionization, where ions are electrostatically attracted to a porous electrode and stored in the electric double layer, leaving a partially desalinated solution. These electrodes are functionalized to achieve maximum efficiency: it is intended that for each depleted electron one ion is removed. For this purpose, the surface is coated with a polyelectrolyte layer of the same sign as the electronic charge. In this work, the movement of ions from the solution to the soft or polyelectrolyte-coated electrodes is studied. For this purpose, a one-dimensional model is used to study the electric and diffusive fluxes produced by the application of an electric field and the storage of these ions in the micropores. The partial differential equations governing the process are numerically solved using the explicit Euler method. The results of the model indicate that the number of ions removed using soft electrodes is approximately 15% greater than that achieved with bare electrodes. Ion adsorption kinetics show that coated electrodes provide slightly slower adsorption compared to bare electrodes. Regarding the charging time of the micropores, it can be seen that it is a faster process (characteristic time of 100 s) compared to the time in which the ion concentration reaches equilibrium: electromigration is faster than diffusion. Comparing the situations with and without polyelectrolyte coating, it is observed that saturation in the micropores is reached earlier when the electrodes are coated. Concerning the cell geometry, it has been found that the characteristic time is proportional to the length of the spacer and inversely proportional to the length of the electrodes. With regard to microporosity, the rate of the process is approximately constant, irrespective of the number of micropores. Moreover, the number of adsorbed ions strongly depends on their initial concentration. Finally, the analysis of the ionic diffusion coefficient is determinant in the kinetics of the process: Taking into account the tortuosity of the porous electrode, which directly affects the diffusion in the channel, is fundamental to obtain model predictions close to reality.
Collapse
Affiliation(s)
| | - J Calvo
- Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain and Modeling Nature (MNat) Research Unit, University of Granada, Spain
| | - S Ahualli
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain and Modeling Nature (MNat) Research Unit, University of Granada, Spain
| |
Collapse
|
2
|
Saleem MW, Ali S, Usman M, Chaudhary TN, Ullah A, Arslan M, Hameed AU. Integration of capacitive deionization and forward osmosis for high water recovery and ultrapure water production: concept, modelling and performance analysis. ENVIRONMENTAL TECHNOLOGY 2024:1-22. [PMID: 38471075 DOI: 10.1080/09593330.2024.2326798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Forward Osmosis (FO), a membrane desalination technology and Capacitive Deionization (CDI), an electrically operated desalination technology, are numerically integrated utilizing four different configurations for the high-water recovery rate and ultrapure water production from brackish water resource. To minimize the wastewater rejection, the CDI desorption stream is continuously fed to the FO unit, efficiently recovering the remaining freshwater. To produce ultrapure water, freshwater stream obtained from FO is provided to the CDI cell, which adsorbs the remaining dissolved solute particles. These two configurations serve the purpose of both industrial as well as domestic water supply requirements. Continuing this concept, the formation of the other two configurations allows us to obtain fresh water and ultrapure water simultaneously and up to a 90% freshwater recovery rate for the areas with inadequate supply. The performance parameters to assess the integration are the Water Recovery Rate (WRR) and Specific Energy Consumption (SEC). The first configuration (CDI-FO), proposed for a high freshwater recovery rate, resulted in 79.33% WRR with an SEC of 0.689 kWh / m 3 . While, for the second configuration (FO-CDI), 34.25% water was recovered as 2.87 ppm ultrapure water along with 34.25% freshwater. The third proposed configuration (CDI-FO-CDI) had a WRR of 79.33%, 14.67% of which was recovered as ultrapure water of concentration 2.86 ppm. The fourth configuration (CDI-FO-FO) developed for high water recovery, removed the maximum of water from the feed stream with a WRR of 91.33% and remained energy-efficient, consuming an SEC of 0.908kWh / m 3 .
Collapse
Affiliation(s)
- Muhammad Wajid Saleem
- Department of Mechanical Engineering, Faculty of Computing, Engineering and Media, De Montfort University Dubai, Dubai, UAE
| | - Samar Ali
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, People's Republic of China
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology (UET) Lahore, Punjab, Pakistan
| | - Tariq Nawaz Chaudhary
- Department of Mechanical Engineering, Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Assad Ullah
- Department of Civil & Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY, USA
| | - Muhammad Arslan
- Department of Mechanical Engineering, University of Engineering and Technology (UET) Lahore, Punjab, Pakistan
| | - Asad Ullah Hameed
- Department of Mechanical Engineering, University of Engineering and Technology (UET) Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Yang ZQ, Zhang WB, Yang K, Chen B, Yin Y, Li JJ, Yang JL, Gao Y, Ma XJ. Switchable NaCl cages via a MWCNTs/Ni[Fe(CN) 6] 2 nanocomposite for high performance desalination. NANOSCALE 2023; 15:19330-19338. [PMID: 38009070 DOI: 10.1039/d3nr04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
With the application of nanomaterials in seawater desalination technology increasing, the adjustable characteristics of carbon-based nanomaterials make it possible to use multiwalled carbon nanotube (MWCNT) materials in seawater desalination technology. In this study, Ni[Fe(CN)6]2 is loaded onto the inner wall of MWCNTs by the co-precipitation method to prepare MWCNTs with variable pore size, making it a switchable cage for NaCl. During the procedure, most of the Ni[Fe(CN)6]2 is transferred to the outer surface of the MWCNTs after adsorption, and NaCl is stored inside the MWCNTs (which have been proved by characterization); at the same time, Ni can improve the cell stability of Ni[Fe(CN)6]2. The effect of adsorbent reaction time and addition amount on the desalination performance of MWCNTs/Ni[Fe(CN)6]2 has been tested. According to the results, the best desalination performance of MWCNTs/Ni[Fe(CN)6]2 is 1354.6 mg g-1 when the reaction time is 0.5 h and the addition amount is 20 mg. After 3 cycles of adsorption and desorption, its desalting performance decreased to 242.3 mg g-1.
Collapse
Affiliation(s)
- Ze-Qin Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Wei-Bin Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Kang Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Bi Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Yi Yin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Jia-Jun Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Jing-Lei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Yue Gao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Xue-Jing Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
4
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
5
|
Chen X, Deng W, Miao L, Gao M, Ao T, Chen W, Ueyama T, Dai Q. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization. ENVIRONMENTAL TECHNOLOGY 2023; 44:1505-1517. [PMID: 34762018 DOI: 10.1080/09593330.2021.2005689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACTCapacitive deionization (CDI) is an environmentally friendly desalination technique with low energy consumption. However, unmodified carbon electrode materials have poor sulfate selectivity and adsorption capacity. In this work, to improve sulfate selectivity, we prepared activated carbon materials loaded with different amino contents by grafting amino groups via acid treatment for different times. In the competitive ion adsorption experiments, the sulfate selectivity of AC was only 0.64 and the amino-modified AC increased by 1.98-2.52 times due to the formation of stronger hydrogen bonds between the amino group and sulfate. AC-NH2-4 had the best selectivity and the sulfate selective coefficient was 2.25. The desorption of sulfate was 92.46% within one hour. In addition, the surface of the amino-modified activated carbon showed significantly improved electrochemical properties and better capacitance. The specific capacitance of amino-modified AC in different electrolyte solutions was consistent with the competitive adsorption results. The specific capacitance of amino-modified AC in Na2SO4 electrolyte solution was the highest. The modified electrode material also had the advantages of a higher adsorption capacity and excellent regeneration performance after continuous electric adsorption-desorption cycles. Therefore, it may have development potential to selectively adsorb sulfate in practical applications.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Wenyang Deng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, PR People's Republic of China
| | - Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, People's Republic of China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, People's Republic of China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | | | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Yu F, Yin H, Bai X, Pan J, Zhang X, Ma J. Cu@Cu2O/carbon for efficient desalination in capacitive deionization. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Cool NI, James R, Schofield P, Handy JV, Bhatia M, Banerjee S. Tunnel-Structured ζ-V 2O 5 as a Redox-Active Insertion Host for Hybrid Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1554-1562. [PMID: 36541932 DOI: 10.1021/acsami.2c17800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Much of the earth's water has a salt content that is too high for human consumption or agricultural use. Enhanced oil recovery operations generate massive volumes of produced water waste with a high mineral content that can substantially exacerbate water distress. Current deionization techniques such as reverse osmosis function by removing the water (majority phase) from the salt (minority phase) and are thus exceedingly energy-intensive. Furthermore, these methods are limited in their ability to selectively extract high-value ions from produced water waste and brine streams. Hybrid capacitive deionization holds promise for enabling both desalination and resource recovery. In this work, we demonstrate the construction of a hybrid capacitive deionization cell that makes use of tunnel-structured ζ-V2O5 as a redox-active positive electrode material. By augmenting surface adsorption with Faradaic insertion processes, a 50% improvement in the ion removal capacity for K and Li ions is obtained as compared to a capacitive high-surface-area carbon electrode. The extracted ions are accommodated in surface sites and interstitial sites within the one-dimensional tunnel framework of ζ-V2O5. The kinetics of ion removal depend on the free energy of hydration, which governs the ease of desolvation at the electrode/electrolyte interface. The overall ion removal capacity additionally depends on the solid-state diffusion coefficient. ζ-V2O5 positive electrodes show substantial selectivity for Li+ removal from mixed flow streams and enrichment of the Li-ion concentration from produced water waste derived from the Permian Basin.
Collapse
Affiliation(s)
- Nicholas I Cool
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3012, United States
| | - Randall James
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
| | - Parker Schofield
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3012, United States
| | - Joseph V Handy
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3012, United States
| | - Mukul Bhatia
- Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843-3012, United States
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3012, United States
| |
Collapse
|
8
|
Liu R, Wang Y, Wu Y, Ye X, Cai W. Controllable synthesis of nickel–cobalt-doped Prussian blue analogs for capacitive desalination. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Peng G, Li H. The electrosorption behavior of shuttle-like FeP: performance and mechanism. RSC Adv 2023; 13:10029-10034. [PMID: 37006352 PMCID: PMC10052389 DOI: 10.1039/d2ra07857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Owing to its high electrochemical ability, the FeP is envisioned to be the potential electrode for capacitive deionization (CDI) with enhanced performance. However, it suffers from poor cycling stability due to the active redox reaction. In this work, a facile approach has been designed to prepare the mesoporous shuttle-like FeP using MIL-88 as the template. The porous shuttle-like structure not only alleviates the volume expansion of FeP during the desalination/salination process but also promotes ion diffusion dynamics by providing convenient ion diffusion channels. As a result, the FeP electrode has demonstrated a high desalting capacity of 79.09 mg g−1 at 1.2 V. Further, it proves the superior capacitance retention, which maintained 84% of the initial capacity after the cycling. Based on post-characterization, a possible electrosorption mechanism of FeP has been proposed. In this work, mesoporous shuttle-like FeP for electrosorption is prepared. As an electrode, it achieves a high salt adsorption capacity of 79.09 mg g−1 and superior capacitance retention. The conversion of FeII to FeIII is responsible for the removal of salty ions.![]()
Collapse
Affiliation(s)
- Gengen Peng
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia UniversityYinchuan 750021China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia UniversityYinchuan 750021China
| |
Collapse
|
10
|
Yang ZQ, Zhang WB, Guo SB, Theint MM, Yin Y, Li JJ, Yang JL, Ma XJ. Flow Electrode Capacitive Deionization System with Simultaneous Desalting of Na + and Gathering of Na . LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15740-15746. [PMID: 36493336 DOI: 10.1021/acs.langmuir.2c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oceans contain many freshwater resources and metal elements that people need, so the rational development of marine resources can solve the two major problems of shortage of freshwater resources and metal elements for people. To solve these two challenges, a system was designed to obtain freshwater resources and metallic elements simultaneously. An ion enrichment module was added to the conventional flow capacitor deionization system to collect metal elements while the seawater was deionized. A flowing electrode allows the metal elements to enter the flowing electrode through the desalination ability. It transports the metal elements to the enrichment module through the fluidity of the fluid while reducing the ion concentration at the flowing electrode, thus reducing the effect caused by the rejection of the same ion and collecting and enriching the metal elements. We purchased activated carbon to test the feasibility of the system with different mass fractions of activated carbon suspensions. The results showed that the elemental enrichment capacity of the system increased from 12.291 to 14.795 mg, and the enrichment rate increased from 13.536 to 16.294 mg cm-2 h-1 as the mass fraction of activated carbon increased. Thus, the system accomplished the goals of desalination and metal collection simultaneously.
Collapse
Affiliation(s)
- Ze-Qin Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Wei-Bin Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Shao-Bo Guo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Myat Myintzu Theint
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
- Mineral Development Section for International Relation, Department of Mines, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw15011, Myanmar
| | - Yi Yin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Jia-Jun Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Jing-Lei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| | - Xue-Jing Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu610059, China
| |
Collapse
|
11
|
Yoon N, Park S, Son M, Cho KH. Automation of membrane capacitive deionization process using reinforcement learning. WATER RESEARCH 2022; 227:119337. [PMID: 36370591 DOI: 10.1016/j.watres.2022.119337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Capacitive deionization (CDI) is an alternative desalination technology that uses electrochemical ion separation. Although several attempts have been made to maximize the energy efficiency and productivity of CDI with conventional control methods, it is difficult to optimize the CDI processes because of the complex correlation between the operational conditions and the composition of feed water. To address these challenges, we applied deep reinforcement learning (DRL) to automatically control the membrane capacitive deionization (MCDI) process, which is one of the representative CDI processes, to accomplish high energy efficiency while desalinating water. In the DRL model, the numerical model is combined as the environment that provides states according to the actions. The feed water conditions, that is, the input state of the DRL, were assumed to have a random salt concentration and constant foulant concentration. The model was constructed to minimize energy consumption and maximize desalted water volume per cycle. After training of 1,000 episodes, the DRL model achieved a 22.07% reduction in specific energy consumption (from 0.054 to 0.042 kWh m-3) and 11.60% increase in water desalted water volume per cycle (from 1.96×10-5 to 2.19×10-5 m3), achieving the desired degree of desalination, compared to the first episode. This improved performance was because the trained model selected the optimized operating conditions of current, voltage, and the number and intensity of flushing. Furthermore, it was possible to train the model depending on demand by modifying the reward function of the DRL model. The fundamental principle described in this study for applying the DRL model in MCDI operations can be the cornerstone of a fully automated water desalination process.
Collapse
Affiliation(s)
- Nakyung Yoon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Sanghun Park
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Moon Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance. Polymers (Basel) 2022; 14:polym14214776. [DOI: 10.3390/polym14214776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Capacitive deionization is an emerging desalination technology with mild operation conditions and high energy efficiency. However, its application is limited due to the low deionization capacity of traditional capacitive electrodes. Herein, we report a novel dual-ion capacitive deionization system with a lithium-ion battery cathode LiMn2O4/C and a sodium-ion battery anode NaTi2(PO4)3/C. Lithium ions could enhance the charge transfer during CDI desalination, while NaTi2(PO4)3/C provided direct intercalation sites for sodium ions. The electrochemical capacities of the battery electrodes fitted well, which was favorable for the optimization of the desalination capacity. The low potential of the redox couple Ti3+/Ti4+ (−0.8 V versus Ag/AgCl) and intercalation/deintercalation behaviors of sodium ions that suppressed hydrogen evolution could enlarge the voltage window of the CDI process to 1.8 V. The novel CDI cell achieved an ultrahigh desalination capacity of 140.03 mg·g−1 at 1.8 V with an initial salinity of 20 mM, revealing a new direction for the CDI performance enhancement.
Collapse
|
13
|
Tauk M, Bechelany M, Lagerge S, Sistat P, Habchi R, Cretin M, Zaviska F. Influence of particle size distribution on carbon-based flowable electrode viscosity and desalination efficiency in flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Simple control of carbon mass loading in capacitive deionization for efficient deionized water production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Nir O, Oren Y, Musie, Atshba W, Chandra A, Geller Y, Chaudhary M, Monat L, Singh P, Zevenhoven R. Reactive transport in membrane separation modeling: a perspective. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Selective fluoride removal on LaHAP/3D-rGO composite electrode by capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Xu L, Peng S, Wu K, Tang L, Wu M, Zong Y, Mao Y, Wu D. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field. WATER RESEARCH 2022; 222:118963. [PMID: 35970008 DOI: 10.1016/j.watres.2022.118963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Magnetic field is a simple and powerful means that enables controlled the transport of electrode particles in flow electrode capacitive deionization (FCDI). However, the magnetic particles are easily stripped from hybrid suspension electrodes and the precise manipulation of the charge percolation network remains challenging. In this study, a programmable magnetic field was introduced into the FCDI system to enhance the desalination performance and operational stability of magnetic FCDI, with core-shell magnetic carbon (MC) used as an alternative electrode additive. The results showed that the pulsed magnetic field (PMF) was more effective in enhancing the average salt removal rate (ASRR) compared to the constant magnetic field (CMF), with 51.6% and 67.7% enhancement, respectively, compared to the magnetic field-free condition. The outstanding advantage of the PMF lies in the enhancement in the trapping and mediating effects in the switching magnetic field, which keeps the concentration of the electrode particles near the current collector at a high level and greatly facilitates electron transport. In long-term operation (20,000 cycles), the pulsed magnetic FCDI achieved a stable desalinating rate of 0.4-0.68 μmol min-1 cm-2 and a charge efficiency of >96%. In brief, our study introduces a new approach for the precise manipulation of charge percolation networks of the suspension electrodes and provides insight into the charging mechanism of the magnetic FCDI.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Ke Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Cheng Y, Shi J, Zhang Q, Fang C, Chen J, Li F. Recent Progresses in Adsorption Mechanism, Architectures, Electrode Materials and Applications for Advanced Electrosorption System: A Review. Polymers (Basel) 2022; 14:polym14152985. [PMID: 35893949 PMCID: PMC9332491 DOI: 10.3390/polym14152985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
As an advanced strategy for water treatment, electrosorb technology has attracted extensive attention in the fields of seawater desalination and water pollution treatment due to the advantages of low consumption, environmental protection, simplicity and easy regeneration. In this work, the related adsorption mechanism, primary architectures, electrode materials, and applications of different electrosorption systems were reviewed. In addition, the developments for advanced electrosorb technology were also summarized and prospected.
Collapse
Affiliation(s)
- Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.S.); (Q.Z.); (J.C.)
| | - Jiayu Shi
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.S.); (Q.Z.); (J.C.)
| | - Qingling Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.S.); (Q.Z.); (J.C.)
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.S.); (Q.Z.); (J.C.)
- Correspondence: ; Tel.: +86-029-61123861
| | - Jing Chen
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.S.); (Q.Z.); (J.C.)
| | - Fengjuan Li
- School of Mechanical and Electrical Engineering, Xinjiang Institute of Technology, Aksu 843000, China;
| |
Collapse
|
19
|
Zhu G, Chen L, Lu T, Zhang L, Hossain MSA, Amin MA, Yamauchi Y, Li Y, Xu X, Pan L. Cu-based MOF-derived architecture with Cu/Cu 2O nanospheres anchored on porous carbon nanosheets for efficient capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 210:112909. [PMID: 35157915 DOI: 10.1016/j.envres.2022.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The design of high-performance electrode materials with excellent desalination ability has always been a research goal for efficient capacitive deionization (CDI). Herein, a hybrid architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets (Cu/Cu2O/C) was first synthesized by pyrolyzing a two-dimensional (2D) Cu-based metal-organic framework and then evaluated as a cathode for hybrid CDI. The as-prepared Cu/Cu2O/C exhibits a hierarchically porous structure with a high specific surface area of 305 m2 g-1 and large pore volume of 0.55 cm3 g-1, which is favorable to accelerating ion migration and diffusion. The porous carbon nanosheet matrix with enhanced conductivity will facilitate the Faradaic reactions of Cu/Cu2O nanospheres during the desalination process. The Cu/Cu2O/C hybrid architecture displays a high specific capacitance of 142.5 F g-1 at a scan rate of 2 mV s-1 in 1 M NaCl solution. The hybrid CDI constructed using the Cu/Cu2O/C cathode and a commercial activated carbon anode exhibits a high desalination capacity of 16.4 mg g-1 at an operation voltage of 1.2 V in 500 mg L-1 NaCl solution. Additionally, the hybrid CDI exhibits a good cycling stability with 18.3% decay in the desalination capacity after 20 electrosorption-desorption cycles. Thus, the Cu/Cu2O/C composite is expected to be a promising cathode material for hybrid CDI.
Collapse
Affiliation(s)
- Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lei Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Wang W, Liu Z, Zhang Z, Li H. Highly Efficient Capacitive Deionization Enabled by NiCo 4MnO 8.5 Electrodes. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100095. [PMID: 35140981 PMCID: PMC8812917 DOI: 10.1002/gch2.202100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The shortage of fresh water resources is one of the major challenges facing this planet. Capacitive deionization (CDI) techniques that are deemed to be highly efficient and require low capital cost have attracted widespread attention in the last few decades. In this work, the cubic ternary metal oxides NiCo4MnO8.5 (Ni-Co-Mn-O) are synthesized by facile hydrothermal method for enhanced symmetrical CDI. Electrochemical measurements illustrate that the Ni-Co-Mn-O possesses low internal resistance and ion diffusion impedance. As a result, the salt removal capacity of the Ni-Co-Mn-O electrode increases from 26.84 to 65.61 mg g-1 by varying the voltage from 0.8 to 1.4 V in 1.0 × 10-2 m NaCl solution, while the charge efficiency stabilizes at ≈80%. After 20 cycles, the capacitance retained is 64.27%, which is due to the irreversibility of Co2+/Co3+ and Mn2+/Mn3+ and the release of Ni3+ from the Ni-Co-Mn-O electrode after long desalination/salination cycles.
Collapse
Affiliation(s)
- Wei Wang
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Zhenzhen Liu
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Zehao Zhang
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| |
Collapse
|
21
|
The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Zhang Z, Jiang S, Chen H, Qi H, Chen Y, Chen Y, Deng Q, Wang S. Efficient Solar-Driven Water Purification Based on Biochar with Multi-Level Pore Bundle Structure for Preparation of Drinking Water. Foods 2021; 10:foods10123087. [PMID: 34945638 PMCID: PMC8701808 DOI: 10.3390/foods10123087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Water is an important source for humankind. However, the amount of available clean water has rapidly reduced worldwide. To combat this issue, the solar-energy-driven evaporation technique is newly proposed to produce clean water. Here, biochar derived from sorghum stalk with a multi-level pore bundle structure is utilized to fabricate a solar-driven evaporator for the first time. The biochar displays rapid water transfer and low thermal conductivity (ca. 0.0405 W m−1 K−1), which is vitally important for such an application purpose. The evaporation rate and energy conversion efficiency of the solar evaporator based on carbonized sorghum stalk can achieve up to 3.173 kg m−2 h−1 and 100%, respectively, which are better than most of the previously reported biomass materials. Furthermore, the carbonized sorghum stalk also displays good resistance to salt crystallization, anti-acidic/basic, and organic pollutants by producing drinking water using seawater, acidic/basic waste water, and organic polluted water, respectively. The direct application of processed water in food production was also investigated. The present solar steam evaporator based on the carbonized sorghum stalk has the potential to create practical drinking water production by using various water sources.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Shizheng Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Haonan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Hao Qi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Yali Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Yujie Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
23
|
Talebi M, Mahdi Ahadian M, Shahrokhian S, Amini MK. Fabrication of porous polyphosphate carbon composite on nickel foam as an efficient binder-less electrode for symmetric capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Synthesis and Characterization of Activated Carbon Co-Mixed Electrospun Titanium Oxide Nanofibers as Flow Electrode in Capacitive Deionization. MATERIALS 2021; 14:ma14226891. [PMID: 34832299 PMCID: PMC8625946 DOI: 10.3390/ma14226891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Flow capacitive deionization is a water desalination technique that uses liquid carbon-based electrodes to recover fresh water from brackish or seawater. This is a potential second-generation water desalination process, however it is limited by parameters such as feed electrode conductivity, interfacial resistance, viscosity, and so on. In this study, titanium oxide nanofibers (TiO2NF) were manufactured using an electrospinning process and then blended with commercial activated carbon (AC) to create a well distributed flow electrode in this study. Field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray (EDX) were used to characterize the morphology, crystal structure, and chemical moieties of the as-synthesized composites. Notably, the flow electrode containing 1 wt.% TiO2NF (ACTiO2NF 1 wt.%) had the highest capacitance and the best salt removal rate (0.033 mg/min·cm2) of all the composites. The improvement in cell performance at this ratio indicates that the nanofibers are uniformly distributed over the electrode’s surface, preventing electrode passivation, and nanofiber agglomeration, which could impede ion flow to the electrode’s pores. This research suggests that the physical mixture could be used as a flow electrode in capacitive deionization.
Collapse
|
25
|
Hsu WS, Preet A, Lin TY, Lin TE. Miniaturized Salinity Gradient Energy Harvesting Devices. Molecules 2021; 26:molecules26185469. [PMID: 34576940 PMCID: PMC8466105 DOI: 10.3390/molecules26185469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Harvesting salinity gradient energy, also known as "osmotic energy" or "blue energy", generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.
Collapse
Affiliation(s)
- Wei-Shan Hsu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
| | - Anant Preet
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department of Chemistry, College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Biomedical Industry Ph.D. Program, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Correspondence: ; Tel.: +886-(03)-573-1750
| |
Collapse
|
26
|
Folaranmi G, Bechelany M, Sistat P, Cretin M, Zaviska F. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1090. [PMID: 33922448 PMCID: PMC8144981 DOI: 10.3390/nano11051090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Capacitive deionization is a second-generation water desalination technology in which porous electrodes (activated carbon materials) are used to temporarily store ions. In this technology, porous carbon used as electrodes have inherent limitations, such as low electrical conductivity, low capacitance, etc., and, as such, optimization of electrode materials by rational design to obtain hybrid electrodes is key towards improvement in desalination performance. In this work, different compositions of mixture of reduced graphene oxide (RGO) and activated carbon (from 5 to 20 wt% RGO) have been prepared and tested as electrodes for brackish water desalination. The physico-chemical and electrochemical properties of the activated carbon (AC), reduced graphene oxide (RGO), and as-prepared electrodes (AC/RGO-x) were characterized by low-temperature nitrogen adsorption measurement, scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Among all the composite electrodes, AC/RGO-5 (RGO at 5 wt%) possessed the highest specific capacitance (74 F g-1) and the highest maximum salt adsorption capacity (mSAC) of 8.10 mg g-1 at an operating voltage ∆E = 1.4 V. This shows that this simple approach could offer a potential way of fabricating electrodes of accentuated carbon network of an improved electronic conductivity that's much coveted in CDI technology.
Collapse
Affiliation(s)
| | - Mikhael Bechelany
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France; (G.F.); (P.S.); (M.C.)
| | | | | | - Francois Zaviska
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France; (G.F.); (P.S.); (M.C.)
| |
Collapse
|
27
|
Capacitive-faradaic fuel cells (CFFCs) for ion separation: Macro-scale configurations and polarization mechanism. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. MEMBRANES 2021; 11:membranes11020126. [PMID: 33673190 PMCID: PMC7917583 DOI: 10.3390/membranes11020126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Saline groundwater (SGW) is an alternative water resource. However, the concentration of sodium, chloride, sulphate, and nitrate in SGW usually exceeds the recommended guideline values for drinking water and irrigation. In this study, the partial desalination performance of three different concentrated SGWs were examined by pressure-driven membrane desalination technologies: nanofiltration (NF), brackish water reverse osmosis (BWRO), and seawater reverse osmosis (SWRO); in addition to one electrochemical-driven desalination technology: membrane capacitive deionisation (MCDI). The desalination performance was evaluated using the specific energy consumption (SEC) and water recovery, determined by experiments and simulations. The experimental results of this study show that the SEC for the desalination of SGW with a total dissolved solid (TDS) concentration of 1 g/L by MCDI and NF is similar and ranges between 0.2–0.4 kWh/m3 achieving a water recovery value of 35–70%. The lowest SECs for the desalination of SGW with a TDS concentration ≥2 g/L were determined by the use of BWRO and SWRO with 0.4–2.9 kWh/m3 for a water recovery of 40–66%. Even though the MCDI technique cannot compete with pressure-driven membrane desalination technologies at higher raw water salinities, this technology shows a high selectivity for nitrate and a high potential for flexible desalination applications.
Collapse
|
29
|
Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization. MATERIALS 2020; 13:ma13225185. [PMID: 33212895 PMCID: PMC7698418 DOI: 10.3390/ma13225185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Capacitive deionization is an emerging brackish water desalination technology whose principle lies in the utilization of porous electrodes (activated carbon materials) to temporarily store ions. Improving the properties of carbon material used as electrodes have been the focus of recent research, as this is beneficial for overall efficiency of this technology. Herein, we have synthesized a composite of activated carbon/graphene oxide electrodes by using a simple blending process in order to improve the hydrophilic property of activated carbon. Graphene oxide (GO) of different weight ratios was blended with commercial Activated carbon (AC) and out of all the composites, AC/GO-15 (15 wt.% of GO) exhibited the best electrochemical and salt adsorption performance in all operating conditions. The as prepared AC and AC/GO-x (x = 5, 10, 15 and 20 wt.% of GO) were characterized by cyclic voltammetry and their physical properties were also studied. The salt adsorption capacity (SAC) of AC/GO-15 at an operating window of 1.0 V is 5.70 mg/g with an average salt adsorption rate (ASAR) of 0.34 mg/g/min at a 400 mg/L salt initial concentration and has a capacitance of 75 F/g in comparison to AC with 3.74 mg/g of SAC, ASAR of 0.23 mg/g/min and a capacitance of 56 F/g at the same condition. This approach could pave a new way to produce a highly hydrophilic carbon based electrode material in CDI.
Collapse
|
30
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|