1
|
Gooran N, Tan SW, Frey SL, Jackman JA. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6524-6536. [PMID: 38478717 DOI: 10.1021/acs.langmuir.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Triton X-100 (TX-100) is a membrane-disrupting detergent that is widely used to inactivate membrane-enveloped viral pathogens, yet is being phased out due to environmental safety concerns. Intense efforts are underway to discover regulatory acceptable detergents to replace TX-100, but there is scarce mechanistic understanding about how these other detergents disrupt phospholipid membranes and hence which ones are suitable to replace TX-100 from a biophysical interaction perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques in combination with supported lipid membrane platforms, we characterized the membrane-disruptive properties of a panel of TX-100 replacement candidates with varying antiviral activities and identified two distinct classes of membrane-interacting detergents with different critical micelle concentration (CMC) dependencies and biophysical mechanisms. While all tested detergents formed micelles, only a subset of the detergents caused CMC-dependent membrane solubilization similarly to that of TX-100, whereas other detergents adsorbed irreversibly to lipid membrane interfaces in a CMC-independent manner. We compared these biophysical results to virus inactivation data, which led us to identify that certain membrane-interaction profiles contribute to greater antiviral activity and such insights can help with the discovery and validation of antiviral detergents to replace TX-100.
Collapse
Affiliation(s)
- Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shelli L Frey
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Dhamu VN, Muthukumar S, Prasad S. E-SCAN: Electrochemical Scanning of Carbonates, an In Situ Approach for Screening and Quantifying Inorganic Carbon in Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15954-15962. [PMID: 37819200 DOI: 10.1021/acs.jafc.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A modified three-electrode system was utilized with a correlated ion-capture film that is functional to changes in soil carbonate moieties to determine an understudied pool of soil carbon that is vital toward holistic carbon sequestration─carbonous soil minerals (CSM). This composite sensor was tested on soils with varying carbonate contents using cyclic voltammetry, chromatocoulometry (DC-based), and electrochemical impedance spectroscopy to determine signal output as a function of increasing dose. To determine the in-field capability, a portable potentiostat device was integrated into a probe head setup that could be inserted into soil for testing. The results from these experiments showed a linearity of R2 > 0.97 and a measurable sensing range from 0.01% (100 ppm) to 1% (10 000 ppm). Therefore, a first-of-a-kind in-soil sensor system was developed for determining carbonate content in real soil samples using electrochemistry that can be tested in-field to survey the field-deployable and point-of-use capability of the system.
Collapse
Affiliation(s)
- Vikram Narayanan Dhamu
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Martínez de la Peña A, Rodríguez de San Miguel E, de Gyves J. MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor. MEMBRANES 2023; 13:740. [PMID: 37623801 PMCID: PMC10456335 DOI: 10.3390/membranes13080740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
A partial least squares (PLS) quantitative chemometric method based on the analysis of the mid-Fourier transform infrared spectroscopy (MID-FTIR) spectrum of polymer inclusion membranes (PIMs) used for the extraction of Cr(VI) from aqueous media is developed. The system previously optimized considering the variables membrane composition, extraction time, and pH, is characterized in terms of its adsorption isotherm, distribution coefficient, extraction percent, and enrichment factor. A Langmuir-type adsorption behavior with KL = 2199 cm3/mmol, qmax = 0.188 mmol/g, and 0 < RL < 1 indicates that metal adsorption is favorable. The characterization of the extraction reaction is performed as well, showing a 1:1 Cr(VI):Aliquat 336 ratio, in agreement with solvent extraction data. The principal component analysis (PCA) of the PIMs reveals a complex pattern, which is satisfactorily simplified and related to Cr(VI) concentrations through the use of a variable selection method (iPLS) in which the bands in the ranges 3451-3500 cm-1 and 3751-3800 cm-1 are chosen. The final PLS model, including the 100 wavelengths selected by iPLS and 10 latent variables, shows excellent parameter values with root mean square error of calibration (RMSEC) of 3.73115, root mean square error of cross-validation (RMSECV) of 6.82685, bias of -1.91847 × 10-13, cross-validation (CV) bias of 0.185947, R2 Cal of 0.98145, R2 CV of 0.940902, recovery% of 104.02 ± 4.12 (α = 0.05), sensitivity% of 0.001547 ppb, analytical sensitivity (γ) of 3.8 ppb, γ-1: 0.6 ppb-1, selectivity of 0.0155, linear range of 5.8-100 ppb, limit of detection (LD) of 1.9 ppb, and limit of quantitation (LQ) of 5.8 ppb. The developed PIM sensor is easy to implement as it requires few manipulations and a reduced number of chemical compounds in comparison to other similar reported systems.
Collapse
Affiliation(s)
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico; (A.M.d.l.P.); (J.d.G.)
| | | |
Collapse
|
4
|
Mani AM, Kumar A, Chaudhury S. Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy. SEP SCI TECHNOL 2023:1-11. [DOI: 10.1080/01496395.2023.2219377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 07/19/2023]
Affiliation(s)
- Agnes Maria Mani
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashwani Kumar
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sanhita Chaudhury
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
5
|
Hu F, Huang Y, Huang Y, Tang J, Hu J. Modified LIX ®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical-Chemical Characteristics. MEMBRANES 2023; 13:550. [PMID: 37367754 DOI: 10.3390/membranes13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
A unique facilitation on the transport flux of Cu(II) was investigated by using modified polymer inclusion membranes (PIMs). LIX®84I-based polymer inclusion membranes (LIX®-based PIMs) using poly(vinyl chloride) (PVC) as support, 2-nitrophenyl octyl ether (NPOE) as plasticizer and Lix84I as carrier were modified by reagents with different polar groups. The modified LIX®-based PIMs showed an increasing transport flux of Cu(II) with the help of ethanol or Versatic acid 10 modifiers. The metal fluxes with the modified LIX®-based PIMs were observed varying with the amount of modifiers, and the transmission time was cut by half for the modified LIX®-based PIM cast with Versatic acid 10. The physical-chemical characteristics of the prepared blank PIMs with different Versatic acid 10 were further characterized by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contract angle measurements and electro-chemical impedance spectroscopy (EIS). The characterization results indicated that the modified LIX®-based PIMs cast with Versatic acid 10 appeared to be more hydrophilic with increasing membrane dielectric constant and electrical conductivity that allowed better accessibility of Cu(II) across PIMs. Hence, it was deduced that hydrophilic modification might be a potential method to improve the transport flux of the PIM system.
Collapse
Affiliation(s)
- Fang Hu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421000, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yifa Huang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421000, China
| | - Yanting Huang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421000, China
| | - Junming Tang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421000, China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Macías M, Rodríguez de San Miguel E. On the Use of Polymer Inclusion Membranes for the Selective Separation of Pb(II), Cd(II), and Zn(II) from Seawater. MEMBRANES 2023; 13:membranes13050512. [PMID: 37233573 DOI: 10.3390/membranes13050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
The synthesis and optimization of polymeric inclusion membranes (PIMs) for the transport of Cd(II) and Pb(II) and their separation from Zn(II) in aqueous saline media are presented. The effects of NaCl concentrations, pH, matrix nature, and metal ion concentrations in the feed phase are additionally analyzed. Experimental design strategies were used for the optimization of PIM composition and evaluating competitive transport. Synthetic seawater with 35% salinity, commercial seawater collected from the Gulf of California (Panakos®), and seawater collected from the beach of Tecolutla, Veracruz, Mexico, were employed. The results show an excellent separation behavior in a three-compartment setup using two different PIMs (Aliquat 336 and D2EHPA as carriers, respectively), with the feed phase placed in the central compartment and two different stripping phases placed on both sides: one solution with 0.1 mol/dm3 HCl + 0.1 mol/dm3 NaCl and the other with 0.1 mol/dm3 HNO3. The selective separation of Pb(II), Cd(II), and Zn(II) from seawater shows separation factors whose values depend on the composition of the seawater media (metal ion concentrations and matrix composition). The PIM system allows S(Cd) and S(Pb)~1000 and 10 < S(Zn) < 1000, depending on the nature of the sample. However, values as high as 10,000 were observed in some experiments, allowing an adequate separation of the metal ions. Analyses of the separation factors in the different compartments in terms of the pertraction mechanism of the metal ions, PIMs stabilities, and preconcentration characteristics of the system are performed as well. A satisfactory preconcentration of the metal ions was observed after each recycling cycle.
Collapse
Affiliation(s)
- Mariana Macías
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Siekierka A, Yalcinkaya F. Selective cobalt-exchange membranes for electrodialysis dedicated for cobalt recovery from lithium, cobalt and nickel solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Mancilla-Rico A, de Gyves J, Rodríguez de San Miguel E. Structural Characterization of the Plasticizers' Role in Polymer Inclusion Membranes Used for Indium (III) Transport Containing IONQUEST ® 801 as Carrier. MEMBRANES 2021; 11:membranes11060401. [PMID: 34072203 PMCID: PMC8229818 DOI: 10.3390/membranes11060401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/27/2022]
Abstract
Polymer inclusion membranes containing cellulose triacetate as support, Ionquest® 801 ((2–ethylhexyl acid) -mono (2–ethylhexyl) phosphonic ester) as extractant, and 2NPOE (o–nitrophenyl octyl ether) or TBEP (tri (2–butoxyethyl phosphate)) as plasticizers were characterized using several instrumental techniques (Fourier Transform Infrared Spectroscopy (FT–IR), Reflection Infrared Mapping Microscopy (RIMM), Electrochemical Impedance Spectroscopy (EIS), Differential Scanning Calorimetry (DSC)) with the aim of determining physical and chemical parameters (structure, electric resistance, dielectric constant, thickness, components’ distributions, glass transition temperature, stability) that allow a better comprehension of the role that the plasticizer plays in PIMs designed for In(III) transport. In comparison to TBEP, 2NPOE presents less dispersion and affinity in the PIMs, a plasticizer effect at higher content, higher membrane resistance and less permittivity, and a pronounced drop in the glass transition temperature. However, the increase in permittivity with In (III) sorption is more noticeable and, in general, PIMs with 2NPOE present higher permeability values. These facts indicate that In (III) transport is favored in membranes with chemical environment of high polarity and efficiently plasticized. A drawback is the decrease in stability because of the minor affinity among the components in 2NPOE–PIMs.
Collapse
|
9
|
Rodriguez A, Pool R, Ortegon J, Escobar B, Barbosa R. Effect of the Agglomerate Geometry on the Effective Electrical Conductivity of a Porous Electrode. MEMBRANES 2021; 11:357. [PMID: 34068836 PMCID: PMC8153589 DOI: 10.3390/membranes11050357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
The study of the microstructure of random heterogeneous materials, related to an electrochemical device, is relevant because their effective macroscopic properties, e.g., electrical or proton conductivity, are a function of their effective transport coefficients (ETC). The magnitude of ETC depends on the distribution and properties of the material phase. In this work, an algorithm is developed to generate stochastic two-phase (binary) image configurations with multiple geometries and polydispersed particle sizes. The recognizable geometry in the images is represented by the white phase dispersed and characterized by statistical descriptors (two-point and line-path correlation functions). Percolation is obtained for the geometries by identifying an infinite cluster to guarantee the connection between the edges of the microstructures. Finally, the finite volume method is used to determine the ETC. Agglomerate phase results show that the geometry with the highest local current distribution is the triangular geometry. In the matrix phase, the most significant results are obtained by circular geometry, while the lowest is obtained by the 3-sided polygon. The proposed methodology allows to establish criteria based on percolation and surface fraction to assure effective electrical conduction according to their geometric distribution; results provide an insight for the microstructure development with high projection to be used to improve the electrode of a Membrane Electrode Assembly (MEA).
Collapse
Affiliation(s)
- Abimael Rodriguez
- División de Ciencias e Ingeniería, Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal 77019, Quintana Roo, Mexico; (A.R.); (R.P.); (J.O.)
| | - Roger Pool
- División de Ciencias e Ingeniería, Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal 77019, Quintana Roo, Mexico; (A.R.); (R.P.); (J.O.)
| | - Jaime Ortegon
- División de Ciencias e Ingeniería, Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal 77019, Quintana Roo, Mexico; (A.R.); (R.P.); (J.O.)
| | - Beatriz Escobar
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, C 43 No 130, Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Romeli Barbosa
- División de Ciencias e Ingeniería, Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal 77019, Quintana Roo, Mexico; (A.R.); (R.P.); (J.O.)
| |
Collapse
|
10
|
Dhal S, Pal K, Giri S. Transdermal Delivery of Gold Nanoparticles by a Soybean Oil-Based Oleogel under Iontophoresis. ACS APPLIED BIO MATERIALS 2020; 3:7029-7039. [PMID: 35019362 DOI: 10.1021/acsabm.0c00893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Developing a facile mechanism for transporting nanoparticles across the whole skin by overcoming the stratum corneum is a challenging task. Herein, a stimuli-responsive and noninvasive transport of gold nanoparticles (AuNPs) has been reported through the fabrication of AuNP-incorporated soybean oil-based oleogels (AuG) using stearic acid as a gelator. A series of AuG was formulated by incorporating different proportions of AuNPs and a fixed amount of ciprofloxacin hydrochloride (drug) to establish that the composition with the highest concentration of AuNP (d-AuG4) was associated with the best iontophoretic response, validated via the corresponding in vitro drug release under AC field-induced iontophoresis. The sample d-AuG4 exhibited both drug and AuNP permeation across the whole pig ear skin thickness within as early as 1 h under the iontophoresis condition. With relevant control experiments, it was shown that the transport of AuNPs through the stratum corneum tissue and across the whole skin was possible upon the simultaneous fulfillment of two conditions: the presence of a skin permeation enhancer (stearic acid) within the oleogel and iontophoresis. While the literature reported that the permeation time for any free inorganic nanoparticle through the full-skin thickness varied within a few days, the permeation enhancement technique developed here reduced the corresponding delivery time for the AuNPs to a few hours. The extent of AuNP permeation that occurred in the microgram (per cm-2) scale was found to be affected by the duration of iontophoresis, suggesting that AuNPs' rapid transdermal entry can be simultaneously triggered and modulated by iontophoretic conditions.
Collapse
Affiliation(s)
- Soumyashree Dhal
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kunal Pal
- Department of Biotechnology and Biomedical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Supratim Giri
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
11
|
Separation of Zn(II), Cr(III), and Ni(II) Ions Using the Polymer Inclusion Membranes Containing Acetylacetone Derivative as the Carrier. MEMBRANES 2020; 10:membranes10050088. [PMID: 32365774 PMCID: PMC7281230 DOI: 10.3390/membranes10050088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
Polymer inclusion membranes (PIMs) doped with ethylenodiamino-bis-acetylacetone as fixed carrier was applied for the investigation of the facilitated transport of Zn(II), Cr(III), and Ni(II) ions from an aqueous nitrate feed phase (cM = 0.001 mol/dm3). The optimal membrane composition (amount of carrier and o-NPPE-plasticizer) was determined. For the optimal polymer inclusion membranes doped with ethylenodiamino-bis-acetylacetone, the following patterns of transport selectivity were found: Zn(II) > Cr(III) > Ni(II). The initial flux of Zn(II), Cr(III), and Ni(II) ions was 6.37 µmol/m2∙s, 5.53 µmol/m2∙s, and 0.40 µmol/m2∙s, respectively. The selectivity coefficients equal to 1.2 and 15.9 were found for Zn(II)/Cr(III) and Zn(II)/Ni(II), respectively. After 24-h transport, the recovery factor of Zn(II), Cr(III), and Ni(II) were 90%, 65%, and 6%, respectively. The polymer inclusion membranes doped with ethylenodiamino-bis-acetylacetone were characterized by scanning electron microscopy and non-contact atomic force microscopy. The influence of membrane morphology on transport process was discussed.
Collapse
|
12
|
Sardesai AU, Dhamu VN, Paul A, Muthukumar S, Prasad S. Design and Electrochemical Characterization of Spiral Electrochemical Notification Coupled Electrode (SENCE) Platform for Biosensing Application. MICROMACHINES 2020; 11:E333. [PMID: 32213807 PMCID: PMC7143249 DOI: 10.3390/mi11030333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
C-reactive protein (CRP) is considered to be an important biomarker associated with many diseases. During any physiological inflammation, the level of CRP reaches its peak at 48 h, whereas its half-life is around 19 h. Hence, the detection of low-level CRP is an important task for the prognostic management of diseases like cancer, stress, metabolic disorders, cardiovascular diseases, and so on. There are various techniques available in the market to detect low-level CRP like ELISA, Western blot, etc. An electrochemical biosensor is one of the important miniaturized platforms which provides sensitivity along with ease of operation. The most important element of an electrochemical biosensor platform is the electrode which, upon functionalization with a probe, captures the selective antibody-antigen interaction and produces a digital signal in the form of potential/current. Optimization of the electrode design can increase the sensitivity of the sensor by 5-10-fold. Herein, we come up with a new sensor design called the spiral electrochemical notification coupled electrode (SENCE) where the working electrode (WE) is concentric in nature, which shows better response than the market-available standard screen-printed electrode. The sensor is thoroughly characterized using a standard Ferro/Ferri couple. The sensing performance of the fabricated platform is also characterized by the detection of standard H2O2 using a diffusion-driven technique, and a low detection limit of 15 µM was achieved. Furthermore, we utilized the platform to detect a low level (100 ng/mL) of CRP in synthetic sweat. The manuscript provides emphasis on the design of a sensor that can offer good sensitivity in electrochemical biosensing applications.
Collapse
Affiliation(s)
- Abha Umesh Sardesai
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Vikram Narayanan Dhamu
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Anirban Paul
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sriram Muthukumar
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA
| | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA
| |
Collapse
|
13
|
Smith EC, Ellis CLC, Javaid H, Arden BG, Venkataraman D. The use of ion-selective membranes to study cation transport in hybrid organic-inorganic perovskites. Phys Chem Chem Phys 2019; 21:20720-20726. [PMID: 31508624 DOI: 10.1039/c9cp03891d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using a methylammonium selective membrane in conjunction with electrochemical impedance spectroscopy, we measured ion migration in methylammonium lead triiodide (MAPbI3) with a millisecond (ms) time constant under illumination. These values were consistent with the reported values of ionic conduction in thin-film perovskite solar cells. We monitored an electrochemical impedance response arising from ionic conductivity through MAPbI3 and a methylammonium selective layer. We could fit this complex impedance response to an intuitive circuit model, which revealed an ionic species moving on a ms time scale. Electrospray ionization mass spectrometry (ESI-MS) revealed direct chemical evidence of methylammonium diffusion into the ion-selective layer. We found no experimental evidence indicating the mobility of lead ions or protons, suggesting that the mobile species observed under illumination is likely methylammonium.
Collapse
Affiliation(s)
- Emily C Smith
- Department of Chemistry, University of Massachusetts Amherst, Amherst Massachusetts 01003-9303, USA.
| | - Christie L C Ellis
- Department of Chemistry, University of Massachusetts Amherst, Amherst Massachusetts 01003-9303, USA.
| | - Hamza Javaid
- Department of Chemistry, University of Massachusetts Amherst, Amherst Massachusetts 01003-9303, USA.
| | - Blaise G Arden
- Department of Chemistry, University of Massachusetts Amherst, Amherst Massachusetts 01003-9303, USA.
| | - D Venkataraman
- Department of Chemistry, University of Massachusetts Amherst, Amherst Massachusetts 01003-9303, USA.
| |
Collapse
|
14
|
Kondratyeva YO, Solovyeva EV, Khripoun GA, Mikhelson KN. Non-constancy of the bulk resistance of ionophore-based ion-selective electrode: A result of electrolyte co-extraction or of something else? Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Dhal S, Mohanty A, Yadav I, Uvanesh K, Kulanthaivel S, Banerjee I, Pal K, Giri S. Magnetic nanoparticle incorporated oleogel as iontophoretic drug delivery system. Colloids Surf B Biointerfaces 2017; 157:118-129. [DOI: 10.1016/j.colsurfb.2017.05.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/01/2022]
|
16
|
Mora-Tamez L, Esquivel-Peña V, Ocampo AL, Rodríguez de San Miguel E, Grande D, de Gyves J. Simultaneous Au III Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis. CHEMSUSCHEM 2017; 10:1482-1493. [PMID: 28063203 DOI: 10.1002/cssc.201601883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/03/2017] [Indexed: 06/06/2023]
Abstract
A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of AuIII salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for AuIII extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L-1 4-nitrophenol aqueous solution with 10 mmol L-1 NaBH4 solution within 25 min.
Collapse
Affiliation(s)
- Lucía Mora-Tamez
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, D.F., México
| | - Vicente Esquivel-Peña
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, D.F., México
| | - Ana L Ocampo
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, D.F., México
| | | | - Daniel Grande
- Équipe "Systèmes Polymères Complexes", Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS Université Paris-Est Créteil, 2 rue Henri Dunant, 94320, Thiais, France
| | - Josefina de Gyves
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, D.F., México
| |
Collapse
|
17
|
Gupta PK, Gupta A, Dhakate SR, Khan ZH, Solanki PR. Functionalized polyacrylonitrile-nanofiber based immunosensor forVibrio choleraedetection. J Appl Polym Sci 2016. [DOI: 10.1002/app.44170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pramod K. Gupta
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| | - A. Gupta
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - S. R. Dhakate
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - Zishan H. Khan
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
| | - Pratima R. Solanki
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
18
|
Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers. SENSORS 2016; 16:s16071106. [PMID: 27438837 PMCID: PMC4969841 DOI: 10.3390/s16071106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 01/26/2023]
Abstract
The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.
Collapse
|
19
|
Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation. J Mech Behav Biomed Mater 2016; 53:174-186. [DOI: 10.1016/j.jmbbm.2015.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/19/2022]
|
20
|
Abu-Dalo MA, Al-Rawashdeh NAF, Al-Mheidat IR, Nassory NS. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1757-899x/92/1/012023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Litaiem Y, Dhahbi M. Physicochemical Properties of an Hydrophobic Ionic Liquid (Aliquat 336) in a Polar Protic Solvent (Formamide) at Different Temperatures. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2013.862170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Chaudhury S, Bhattacharyya A, Goswami A. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12994-13000. [PMID: 25299942 DOI: 10.1021/es503667j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.
Collapse
Affiliation(s)
- Sanhita Chaudhury
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
23
|
Ren X, Liu K, Zhang Q, Noh HM, Kumbur EC, Yuan WW, Zhou JG, Chong PLG. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12618-12628. [PMID: 24937508 DOI: 10.1021/am502613x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius contains exclusively bipolar tetraether lipids, which are able to form extraordinarily stable vesicular membranes against a number of chemical, physical, and mechanical stressors. PLFE liposomes have thus been considered appealing biomaterials holding great promise for biotechnology applications such as drug delivery and biosensing. Here we demonstrated that PLFE can also form free-standing "planar" membranes on micropores (∼100 μm) of polydimethylsiloxane (PDMS) thin films embedded in printed circuit board (PCB)-based fluidics. To build this device, two novel approaches were employed: (i) an S1813 sacrificial layer was used to facilitate the fabrication of the PDMS thin film, and (ii) oxygen plasma treatment was utilized to conveniently bond the PDMS thin film to the PCB board and the PDMS fluidic chamber. Using electrochemical impedance spectroscopy, we found that the dielectric properties of PLFE planar membranes suspended on the PDMS films are distinctly different from those obtained from diester lipid and triblock copolymer membranes. In addition to resistance (R) and capacitance (C) that were commonly seen in all the membranes examined, PLFE planar membranes showed an inductance (L) component. Furthermore, PLFE planar membranes displayed a relatively large membrane resistance, suggesting that, among the membranes examined, PLFE planar membrane would be a better matrix for studying channel proteins and transmembrane events. PLFE planar membranes also exhibited a sharp decrease in phase angle with the frequency of the input AC signal at ∼1 MHz, which could be utilized to develop sensors for monitoring PLFE membrane integrity in fluidics. Since the stability of free-standing planar lipid membranes increases with increasing membrane packing tightness and PLFE lipid membranes are more tightly packed than those made of diester lipids, PLFE free-standing planar membranes are expected to be considerably stable. All these salient features make PLFE planar membranes particularly attractive for model studies of channel proteins and transmembrane events and for high-throughput drug screening and artificial photosynthesis. This work can be extended to nanopores of PDMS thin films in microfluidics and eventually aid in membrane-based new lab-on-a-chip applications.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|