1
|
Dmitrenko M, Mikhailovskaya O, Dubovenko R, Kuzminova A, Myznikov D, Mazur A, Semenov K, Rusalev Y, Soldatov A, Ermakov S, Penkova A. Pervaporation Membranes Based on Polyelectrolyte Complex of Sodium Alginate/Polyethyleneimine Modified with Graphene Oxide for Ethanol Dehydration. Polymers (Basel) 2024; 16:1206. [PMID: 38732675 PMCID: PMC11085317 DOI: 10.3390/polym16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.
Collapse
Affiliation(s)
- Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Olga Mikhailovskaya
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Roman Dubovenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Danila Myznikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anton Mazur
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Konstantin Semenov
- Pavlov First Saint Petersburg State Medical University, L’va Tolstogo ulitsa 6–8, St. Petersburg 197022, Russia;
| | - Yury Rusalev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova St., Rostov-on-Don 344090, Russia; (Y.R.); (A.S.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova St., Rostov-on-Don 344090, Russia; (Y.R.); (A.S.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| |
Collapse
|
2
|
Polotskaya G, Tian N, Faykov I, Goikhman M, Podeshvo I, Loretsyan N, Gofman I, Zolotovsky K, Pulyalina A. Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture. MEMBRANES 2023; 13:160. [PMID: 36837663 PMCID: PMC9963631 DOI: 10.3390/membranes13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Poly(2,2'-biquinoline-6,6'-dicarbohydrazide)-co-(bistrimelliteimide)methylene-bisanthranylide (PHI) and its metal-polymer complex PHI-Cu(I) containing several types of functional groups (hydrazide, carboxyl, amide, and imide fragments) were synthesized to prepare two types of dense nonporous membranes. The study on morphology using scanning electron microscopy (SEM), measurements of mechanical, thermal, and transport properties of the membrane samples was carried out. The main mechanical properties of both membranes do not differ significantly, but the values of ultimate deformation differ palpably as a result of a non-uniform character of the deformation process for the PHI membrane. The thermal analysis based on the curves of thermogravimetric (TGA) and differential thermal (DTA) analyses of the PHI and PHI-Cu(I) membranes revealed peculiarities of the membrane structure. Transport properties were studied in pervaporation (PV) of methanol (MeOH) and dimethyl carbonate (DMC) mixtures including an azeotropic point. Intrinsic properties of the penetrant-membrane system were also determined. It was found that the total flux is higher through the PHI membrane, but the PHI-Cu(I) membrane exhibits a higher separation factor. Calculation of the pervaporation separation index (PSI) allowed to conclude that the PHI-Cu(I) membrane exhibits better transport properties as compared with the PHI membrane.
Collapse
Affiliation(s)
- Galina Polotskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Nadezhda Tian
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Ilya Faykov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Mikhail Goikhman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Irina Podeshvo
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Nairi Loretsyan
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Konstantin Zolotovsky
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Alexandra Pulyalina
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| |
Collapse
|
3
|
Oxygen plasma-assisted contra-diffusion self-assembly of covalent organic framework pervaporation membranes for organic-solvent dehydration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Fabrication of polydimethylsiloxane mixed matrix membranes for recovery of ethylene glycol butyl ether from water by pervaporation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Mali M, Walekar L, Mhamane D, Mali G, Pawar S, Patil V, Parbat H, Gokavi G. Fabrication of ternary polyvinyl alcohol/tetraethyl orthosilicate/silicotungstic acid hybrid membranes for pervaporation dehydration of alcohol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Yahya R, Elshaarawy RF. Highly sulfonated chitosan-polyethersulfone mixed matrix membrane as an effective catalytic reactor for esterification of acetic acid. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. MEMBRANES 2022; 12:membranes12030312. [PMID: 35323787 PMCID: PMC8956067 DOI: 10.3390/membranes12030312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.
Collapse
|