1
|
Hassan D, Sani A, Chanihoon GQ, Antonio Pérez A, Ehsan M, Torres Huerta AL. Environmentally Sustainable and Green Polymeric Method for Chitosan (CH) Film Synthesis Using Natural Acids and Impact of Zinc Ferrite Nanoparticles (NPs) on Water Solubility (WS) and Physical Properties. Polymers (Basel) 2024; 16:3466. [PMID: 39771318 PMCID: PMC11728712 DOI: 10.3390/polym16243466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFe2O4 nanoparticles (NPs), adding to this work's novelty. The crystalline size of the ZnFe2O4 NPs was computed to be ~16 nm. The introduction of 1% and 2% ZnFe2O4 NPs improved not only the mechanical properties of the films, but also their barrier properties and water solubility (WS). The tensile strength increased from 0.641 MPa to 0.835 MPa when 2% NPs were incorporated, which is almost 1.30 times greater; the NPs also enhanced the surface strength by 2.66 times, which was demonstrated by the puncture strength. The introduction of NPs occupied the vacant spaces and improved the barrier capabilities of the CH film by reducing the water vapor permeability (WVP) value from 8.752 ± 0.015 for bare CH films to 6.299 ± 0.009 for 2% NP-containing CH films. Overall, the introduction of ZnFe2O4 NPs boosted the mechanical and barrier properties of the CH films, and offers a promising method for developing sustainable, eco-friendly, and biodegradable polymeric films for potential packaging and medical applications to contribute to circular economic efforts.
Collapse
Affiliation(s)
- Dilawar Hassan
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ayesha Sani
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ghulam Qadir Chanihoon
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76080, Pakistan;
| | - Aurora Antonio Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Muhammad Ehsan
- Centro de Bachillerato Tecnológico Agropecuario, 162. Carr. Mexico-Veracruz Vía Texcoco km 95, Francisco I. Madero C.P. 90280, Tlaxcala, Mexico;
| | - Ana Laura Torres Huerta
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| |
Collapse
|
2
|
Hassan D, Sani A, Antonio Pérez A, Ehsan M, Hernández-Varela JD, Chanona-Pérez JJ, Torres Huerta AL. The Impact of Nickel-Zinc Ferrite Nanoparticles on the Mechanical and Barrier Properties of Green-Synthesized Chitosan Films Produced Using Natural Juices. Polymers (Basel) 2024; 16:3455. [PMID: 39771307 PMCID: PMC11677734 DOI: 10.3390/polym16243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFe2O4 nanoparticles (NiZnFe2O4 NPs) to obtain improved mechanical and barrier properties, facilitating their future application as sustainable, corrosion-resistant coatings for medical instruments. The synthesized NiZnFe2O4 NPs had a crystallite size of ~29 nm. Reinforcement with the nanoparticles in bio-sourced chitosan films was conducted at two concentrations: 1% and 2%. The mechanical strength of the CH film was found to be 1.52 MPa, while the 2% NiZnFe2O4 NP-containing films showed stress-bearing potential of 1.04 MPa with a larger strain value, confirming the elastic nature of the films. Furthermore, the % elongation was directly proportional to the NP concentration, with the highest value of 36.833% obtained for the 2% NP-containing films. The CH films presented improved barrier properties with the introduction of the NiZnFe2O4 NPs, making them promising candidates for coatings in medical instruments; this could protect such instruments from corrosion under controlled conditions. This approach not only broadens the application range of biopolymeric films but also aligns with global sustainability goals, serving to reduce the reliance on non-renewable corrosion-resistant coatings.
Collapse
Affiliation(s)
- Dilawar Hassan
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (D.H.); (A.S.); (A.A.P.)
| | - Ayesha Sani
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (D.H.); (A.S.); (A.A.P.)
| | - Aurora Antonio Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (D.H.); (A.S.); (A.A.P.)
| | - Muhammad Ehsan
- Centro de Bachillerato Tecnológico Agropecuario 162. Carr. Mexico-Veracruz vía Texcoco km 95, Francisco I. Madero C.P. 90280, Tlax, Mexico;
| | - Josué D. Hernández-Varela
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Mexico City 07738, Mexico; (J.D.H.-V.); (J.J.C.-P.)
| | - José J. Chanona-Pérez
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Mexico City 07738, Mexico; (J.D.H.-V.); (J.J.C.-P.)
| | - Ana Laura Torres Huerta
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (D.H.); (A.S.); (A.A.P.)
| |
Collapse
|
3
|
Cheng M, Shu Y, Li M, Li C, Liang T, Zhang Z. Characterisation of an edible active film prepared from bacterial nanocellulose/forsythia essential oil Pickering emulsions with funoran and its application in fresh meat. Int J Biol Macromol 2024; 280:136141. [PMID: 39349084 DOI: 10.1016/j.ijbiomac.2024.136141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This study sought to develop an edible active film by integrating Pickering emulsions of forsythia essential oil and bacterial nanofibers at various concentrations into a film-forming matrix composed of funoran (F). The stability of the emulsions was evaluated through examination of the micro-morphology, particle size and distribution, 7-day emulsification index, and embedding rate of the Pickering emulsions. Subsequently, selected Pickering emulsions were incorporated into F to generate the edible active film. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy revealed that the Pickering emulsion was uniformly distributed throughout the F film, interconnected by hydrogen bonds. X-ray Diffraction spectra exhibited changes in peak intensity and shifts in position attributable to the edible active film. Pickering emulsion had a minimal impact on thermal stability. The film's tensile strength significantly increased, while elongation at break decreased. The heightened concentration of hydroxyl groups in the film led to increased thickness, reduced moisture content, and enhanced hygroscopicity. The edible active film exhibited superior antioxidant and antibacterial properties, thereby more efficiently shielding against oxygen and water vapour. In preservation tests involving chicken and lamb, the Pickering emulsion led to elevations in pH, total volatile basic nitrogen, and thiobarbituric acid reactive substance levels in the meat.
Collapse
Affiliation(s)
- Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Chaoyu Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China.
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
4
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
5
|
Subramani G, Manian R. Bioactive chitosan films: Integrating antibacterial, antioxidant, and antifungal properties in food packaging. Int J Biol Macromol 2024; 278:134596. [PMID: 39127291 DOI: 10.1016/j.ijbiomac.2024.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
In this work, chitosan was combined with bio-vanillin (BV) and kaolin clay (KC) to create a novel antifungal and biodegradable food packaging film. The chitosan/KC/BV film exhibited an antioxidant capacity of 80 % as measured by DPPH assay, which was significantly higher than that of the chitosan film which has 55.6 %). The film also demonstrated strong antimicrobial activity with a reduction of 90 % in the growth of E. coli and S. aureus compared to the control. Additionally, the chitosan/KC/BV film showed a 75 % reduction in fungal growth compared to chitosan film. Furthermore, the water vapor permeability of the chitosan film was reduced as 5.38 with the addition of KC/BV. The degradation study revealed that the chitosan/KC film degraded by 88 % within 20 days under composting conditions. Additionally, fresh-cut apple slices were used to examine the effectiveness of chitosan/KC/BV film as a packaging material. The fruit's weight loss and browning index showed satisfactory food preservation. Our research suggests that the chitosan/KC/BV film has great potential for use in the food sector due to its strong antioxidant, antimicrobial, and biodegradable properties.
Collapse
Affiliation(s)
- Gomathi Subramani
- Department of Biotechnology, School of BioSciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Rameshpathy Manian
- Department of Biotechnology, School of BioSciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014.
| |
Collapse
|
6
|
Udo T, Mummaleti G, Mohan A, Singh RK, Kong F. Current and emerging applications of carrageenan in the food industry. Food Res Int 2023; 173:113369. [PMID: 37803710 DOI: 10.1016/j.foodres.2023.113369] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
Carrageenan, a polysaccharide derived from red algae, has a long history of use as a food additive in food. Carrageenan comes in three classes, κ-, ι-, and λ-carrageenan, with different properties attributed to their organosulfate substitution levels, and their interactions with other food components give rise to properties such as water holding, thickening, gelling, and stabilizing. Over the years, carrageenan has been used in wide variety of food products such as meat, dairy, and flour-based products, and their mechanisms and functions in these matrices have also been studied. With the emergence of novel food technologies, carrageenan's potential applications have been extensively explored alongside, including encapsulation, edible films/coatings, plant-based analogs, and 3D/4D printing. As the food technology evolves, the required functions of food ingredients have changed, and carrageenan is being investigated for its role in these new areas. However, there are many similarities in the use of carrageenan in both classic and emerging applications, and understanding the underlying principles of carrageenan will lead to a proper use of carrageenan in emerging food products. This review focuses on the potential of carrageenan as a food ingredient in these emerging technologies mainly based on papers published within the past five years, highlighting its functions and applications to better understand its role in food products.
Collapse
Affiliation(s)
- Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Mouzahim ME, Eddarai EM, Eladaoui S, Guenbour A, Bellaouchou A, Zarrouk A, Boussen R. Effect of Kaolin clay and Ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation. Food Chem 2023; 410:135470. [PMID: 36652798 DOI: 10.1016/j.foodchem.2023.135470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In this work, a novel antioxidant, antibacterial, and biodegradable food packaging film was elaborated, by incorporating natural kaolin clay (KC) and Ficus carica mediated silver nanoparticles (AgNPs) into Chitosan (Cht). A comparison of the physico-chemical and functional characteristics of the Cht/KC/AgNPs film was performed with those of Cht, Cht/KC, and Cht/AgNPs. SEM analysis showed a rough surface in the composite films containing KC particles because of their large diameter (50-120 μm) compared to AgNPs (20-80 nm). The FTIR analysis suggested that the interactions between Cht and AgNPs were stronger than those between Cht and KC. The tensile strength of Cht film increased from 16 MPa to ∼24 MPa in Cht/KC/AgNPs film. The introduction of KC and/or AgNPs considerably improved the light and moisture barrier capacity of the Cht film. The UV light transmittance decreased by 50 % for Cht film when incorporated by KC and AgNPs. Moreover, Cht/AgNPs was better in terms of antioxidant, antibacterial, and mechanical compared to Cht/KC, which was superior in biodegradability and water vapor barrier capacity. In particular, the Cht/KC/AgNPs film presented good barrier, antioxidants, antibacterial, mechanical, and biodegradable properties, owing to the synergistic effect between KC and AgNPs. For the packaging properties, all the films were tested for their ability to keep the freshness of apple slices as wrapping material. The films exhibited good results, and the Cht/KC/AgNPs showed promising performance regarding the moisture loss, browning index, total phenolic compound, and antioxidant activity of the apple slices. Moreover, the Cht/KC/AgNPs film exhibited a migration of silver meeting the standards set by EFSA and ECHA, which makes this film safe for food packaging.
Collapse
Affiliation(s)
- M El Mouzahim
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - E M Eddarai
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - S Eladaoui
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Guenbour
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Bellaouchou
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco.
| | - R Boussen
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| |
Collapse
|
8
|
Dewi Subramaniam S, Hajar Abd Rahim S, Abdul Halim L, Basrawi F, Aini Mohd Azman N. Study on bee bread extracts as active ingredients in SGC-Active film for food packaging application. MATERIALS TODAY: PROCEEDINGS 2023. [DOI: 10.1016/j.matpr.2023.04.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Zheng M, Zhu Y, Zhuang Y, Tan KB, Chen J. Effects of grape seed extract on the properties of pullulan polysaccharide/xanthan gum active films for apple preservation. Int J Biol Macromol 2023; 241:124617. [PMID: 37119919 DOI: 10.1016/j.ijbiomac.2023.124617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Grape seed extract (GSE) was added to pullulan polysaccharide (PP)/xanthan gum (XG) as composite film (PP/XG/GSE or PXG). The observed composite morphology indicated their biocompatibility. Sample PXG100 (contain 100 mg/L GSE) demonstrated the best mechanical properties, with tensile strength of 16.62 ± 1.27 MPa, and the elongation at break of (22.60 ± 0.48)%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity of PXG150 were the highest at (81.52 ± 1.57)% and (90.85 ± 1.54)%, respectively. PXG films also demonstrated inhibitory effects on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The PXG films could also prolong the shelf life of fresh-cut apples because it could decrease the rate of weight loss and retain more vitamin C and total polyphenol even on the 5th day. The weight loss rate of PXG150 was decreased from (8.58 ± 0.6)% (control) to (4.15 ± 0.19)%. It was able to achieve vitamin C and total polyphenol retention rate of 91 % and 72 %, respectively, which was significantly higher that the control sample. Therefore, GSE had contributed in enhancing the antibacterial, antioxidant properties, mechanical strength, UV protection and water resistance in PXG composite films. This effectively extend the shelf life of fresh-cut apples, which it will be an excellent food packaging material.
Collapse
Affiliation(s)
- Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yuanhong Zhuang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, Xiamen 361021, PR China.
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China.
| |
Collapse
|
10
|
El Mouzahim M, Eddarai EM, Eladaoui S, Guenbour A, Bellaouchou A, Zarrouk A, Boussen R. Food packaging composite film based on chitosan, natural kaolinite clay, and Ficus. carica leaves extract for fresh-cut apple slices preservation. Int J Biol Macromol 2023; 233:123430. [PMID: 36716844 DOI: 10.1016/j.ijbiomac.2023.123430] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
The problem of environmental plastic contamination is one of the most serious issues facing our world today. The majority of the packaging materials used to preserve food are made of plastic which is considered an environmental issue. Natural kaolinite clay (KC) and Ficus leaf extract (FLE) were combined with chitosan in this work to create a novel antioxidant and biodegradable food packaging film. Chitosan/KC/FLE film was compared to chitosan film, Chitosan/KC, and Chitosan/FLE films in terms of structural, physical, and functional aspects. The addition of FLE and/or KC significantly improved the light and moisture barrier characteristics, mechanical properties, and antioxidant capabilities of chitosan film. Moreover, KC addition had a remarkable impact on the water vapor permeability and the biodegradability of the chitosan film. Because of the synergistic action of FLE and KC, the Chitosan/KC/FLE film delivered strong barrier and antioxidant capabilities. Furthermore, Chitosan/KC/FLE film was tested as packaging material on fresh-cut apple slices and demonstrated good food preservation regarding the weight loss, browning index, and total phenolic content of the fruit. According to our findings, Chitosan/KC/FLE film might be employed as a possible food packaging material in the food industry.
Collapse
Affiliation(s)
- M El Mouzahim
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - E M Eddarai
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - S Eladaoui
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Guenbour
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Bellaouchou
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| | - A Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco.
| | - R Boussen
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal-Rabat BP 1014, Morocco
| |
Collapse
|
11
|
Algal polysaccharides: structure, preparation and applications in food packaging. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
14
|
Optimization of Antibacterial, Physical and Mechanical Properties of Novel Chitosan/Olibanum Gum Film for Food Packaging Application. Polymers (Basel) 2022; 14:polym14193960. [PMID: 36235904 PMCID: PMC9573402 DOI: 10.3390/polym14193960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Chitosan-based films are promising active biodegradable materials with the ability to be enhanced by different materials, including gums. This study aims to optimize the physical (transmittance, water vapor permeability and water solubility), mechanical (tensile strength and elongation at break) and antibacterial (against Staphylococcus aureus and Salmonella Typhimurium) properties of newly fabricated chitosan/olibanum gum (CH/OG) films as a function of different levels of CH (0.5, 0.75, 1, 1.25 and 1.5% w/v) and OG (0.125, 0.25, 0.375, 0.5 and 0.625% w/v), using response surface methodology (RSM). Moreover, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) were used to better characterize the fabricated films. RSM analysis results showed the significant fitting of all dependent variable responses to the quadratic polynomial model. To attain the desirable physical, mechanical and antibacterial responses, the optimal concentrations were 1.31% (w/v) CH and 0.3% (w/v) OG. The encouraging antibacterial, physical and mechanical properties of the developed composites support the application of chitosan/gum blends in active food packaging, particularly for perishable foodstuffs, such as meat and horticultural products.
Collapse
|
15
|
Valdés A, Garrigós MC, Jiménez A. Extraction and Characterization of Antioxidant Compounds in Almond ( Prunus amygdalus) Shell Residues for Food Packaging Applications. MEMBRANES 2022; 12:806. [PMID: 36005720 PMCID: PMC9416045 DOI: 10.3390/membranes12080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This work proposes the revalorization of almond shell (AS) wastes as an active additive for food packaging applications. A new microwave-assisted extraction (MAE) method to obtain extracts rich in polyphenolic compounds with high antioxidant capacity was optimized. An experimental design to optimize the MAE procedure through response surface methodology (RSM) using a Box-Behnken design was proposed. The effects of extraction temperature, irradiation time, ethanol:water concentration, and solvent pH at three levels were evaluated in terms of total phenolic content (TPC) and antioxidant activity (DPPH (2,2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays). The optimal conditions found were 57 min, 80 °C, pH 8, and 70% (v/v) ethanol. Optimized MAE extracts showed low soluble protein content (0.43 mg BSA g-1) and were rich in TPC (5.64 mg GAE g-1), flavonoids (1.42 mg CE g-1), and polysaccharides (1.59 mg glucose g-1), with good antioxidant capacity (2.82 mg AAE acid g-1). These results suggest the potential application of these extracts in the food industry as active additives. This strategy opens new pathways to valorize almond shell residues, contributing to the circular economy.
Collapse
|
16
|
Advances in Bio-Based Materials for Food Packaging Applications. MEMBRANES 2022; 12:membranes12080735. [PMID: 36005650 PMCID: PMC9412566 DOI: 10.3390/membranes12080735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023]
|
17
|
Development of Edible Coating from Gelatin Composites with the Addition of Black Tea Extract (Camellia sinensis) on Minimally Processed Watermelon (Citrullus lanatus). Polymers (Basel) 2022; 14:polym14132628. [PMID: 35808671 PMCID: PMC9269605 DOI: 10.3390/polym14132628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this research was to determine the effect of composite fish gelatin–chitosan edible coatings enriched with black tea extract on the physical, chemical, and fungal decay properties of minimally processed watermelons stored at ±4 °C for 13 days. In this study, tuna skin gelatin was extracted and used to prepare edible coating solutions which comprised 4% gelatin, 2% chitosan, 2% calcium lactate, 2% glycerol, and black tea extract (0%; 0.25%; 0.50%; 0.75%; 1%). The samples were coated using the layer-by-layer dipping technique. This study showed that composite fish gelatin–chitosan edible coating enriched with black tea extract maintained and improved weight loss, texture (hardness), color, pH, and total soluble solid antioxidant activity and prevented fungal decay on minimally processed watermelons stored at ±4 °C for 13 days. The development in this study of edible film and a coating prepared from fish gelatin–chitosan and the incorporation of black tea extract as an antioxidant or antimicrobial agent can be a new approach to preventing postharvest loss and increasing the shelf life of minimally processed watermelon.
Collapse
|
18
|
Keawpeng I, Lekjing S, Paulraj B, Venkatachalam K. Application of Clove Oil and Sonication Process on the Influence of the Functional Properties of Mung Bean Flour-Based Edible Film. MEMBRANES 2022; 12:535. [PMID: 35629861 PMCID: PMC9146281 DOI: 10.3390/membranes12050535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
The present study was aimed to investigate the effects of sonication and clove oil incorporation on the improvement of physical, antioxidant, and antimicrobial properties and lipid oxidation inhibiting abilities of mung bean flour (MF)-based films. There were three groups of films tested (1) MF: mung bean flour alone, (2) MFC: MF incorporated with 2% clove oil (C), and (3) MFCU: MFC prepared with sonication (25 kHz, 100% amplitude, 10 min). Film thickness and bulk density showed slight differences, and moisture content, solubility, and water vapor permeability significantly differed between the formulations. Tensile strength, elongation at break, and Young’s modulus were highest for the MFCU films, followed by MFC and MF in rank order. Furthermore, the Fourier-transform infrared spectroscopy results also demonstrated that the clove oil and sonication treatment had improved the interconnections of the biopolymers, thus increasing the physical strength of the film. Phytochemicals in terms of total phenolics and total flavonoids were elevated in the MFCU films and contributed to stronger radical scavenging abilities (p < 0.05). MFC and MFCU films showed a strong antibacterial control of the Gram-positive Staphylococcus aureus (S. aureus) and also of the Gram-negative Campylobacter jejuni (C. jejuni). Overall, the lipid oxidation indicators Thiobarbituric acid reactive substances (TBARS, peroxide value, p-anisidine value, and totox value) showed significantly high inhibition, attributed to radical scavenging activities in the MFCU and MFC samples. The mung bean flour films incorporated with clove oil and prepared with sonication have good potential as packaging materials for food due to strong physical, antimicrobial, and antioxidant properties, as well as lipid oxidation inhibiting abilities.
Collapse
Affiliation(s)
- Ittiporn Keawpeng
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Muang, Songkhla 90000, Thailand;
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, Tamil Nadu, India;
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| |
Collapse
|
19
|
Pectin-Based Edible Coating Combined with Chemical Dips Containing Antimicrobials and Antibrowning Agents to Maintain Quality of Fresh-Cut Pears. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to assess the effects of pectin coating alone (PE) or combined with chemical dips containing potassium sorbate (PS) or sodium benzoate (SB) as antimicrobials, and N-acetyl cysteine (N-AC) or ascorbic acid (AA) + citric acid (CA) as antibrowning agents, on weight loss, color values, browning index, firmness, titratable acidity, soluble solids content, total phenolic content, antioxidant activity and sensory attributes of fresh-cut pears during 15-day storage at 8 °C. Pectin coating delayed weight loss and improved firmness of fresh-cut pears as compared to control samples. Addition of either 1% N-AC or 1% CA + 1% AA in the formulation of the chemical dip protected the phenolic compounds and enhanced the antioxidant activity of fresh-cut pears during storage. PE + 0.2% SB + 1% N-AC and PE + 0.2% PS + 1% N-AC were the most efficient treatments in preserving color and reducing the browning index of fresh-cut pears during 15-day storage at 8 °C and received the highest scores for all sensory attributes throughout 12 days of storage. The results demonstrate the feasibility of PE + 0.2% SB + 1% N-AC and PE + 0.2% PS + 1% N-AC for extending the shelf life of fresh-cut pears.
Collapse
|
20
|
Preparation and Characterization of Yellow Peach Peel/Sodium Alginate/Glycerol Antioxidant Film Applicable for Oil Package. Polymers (Basel) 2022; 14:polym14091693. [PMID: 35566863 PMCID: PMC9105129 DOI: 10.3390/polym14091693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
This work was dedicated to improving the utilization rate of yellow peach peel (YPP), with the addition of sodium alginate (SA) and glycerol (G) to prepare a biodegradable antioxidant film. First, the formulation of the film was optimized via response surface methodology (RSM) combined with the multi-index comprehensive evaluation method, considering physical properties including tensile strength (TS), elongation at break (E%), water solution (WS) and light transmittance (T). The RSM results displayed the best process condition was 2.50% of YPP, 0.60% SA and 0.80% of G (based on water) and compared with pure YPP film and YPP-SA film, the optimized (YPP-SA-G) film presented excellent properties with TS of 21.52 MPa, E of 24.8%, T of 21.56% on 600 nm, and WS of 41.61%, the comprehensive evaluation score of the film was 0.700. Furthermore, the films were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR analysis showed the main interaction of hydrogen between YPP, SA and G make the film has excellent compatibility, and the SEM images displayed that the film was dense and compacted with a little roughness. In addition, the optimized film had excellent thermal stability, suggested by TGA and XRD showed that the film’s crystal structure has been changed significantly when the SA and G were mixed in. The TPC and the ability of DPPH radical scavenging of the YPP-SA-G film was 17.68 mg·g−1 of GAE and 18.65%, then potential packaging applications were evaluated using soybean oil and the YPP-SA-G antioxidant film significantly decreased peroxide value (POV) to delay oil oxidation during storage. Therefore, the YPP-SA-G film is expected to provide a new theoretical basis for the use of food processing by-products and the packaging industry.
Collapse
|
21
|
Application of Red Cabbage Anthocyanins as pH-Sensitive Pigments in Smart Food Packaging and Sensors. Polymers (Basel) 2022; 14:polym14081629. [PMID: 35458378 PMCID: PMC9025686 DOI: 10.3390/polym14081629] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are excellent antioxidant/antimicrobial agents as well as pH-sensitive indicators that provide new prospects to foster innovative smart packaging systems due to their ability to improve food shelf life and detect physicochemical and biological changes in packaged food. Compared with anthocyanins from other natural sources, red cabbage anthocyanins (RCAs) are of great interest in food packaging because they represent an acceptable color spectrum over a broad range of pH values. The current review addressed the recent advances in the application of RCAs in smart bio-based food packaging systems and sensors. This review was prepared based on the scientific reports found on Web of Science, Scopus, and Google Scholar from February 2000 to February 2022. The studies showed that the incorporation of RCAs in different biopolymeric films could affect their physical, mechanical, thermal, and structural properties. Moreover, the use of RCAs as colorimetric pH-responsive agents can reliably monitor the qualitative properties of the packaged food products in a real-time assessment. Therefore, the development of smart biodegradable films using RCAs is a promising approach to the prospect of food packaging.
Collapse
|
22
|
Effect of Chitosan Incorporation on the Development of Acrylamide during Maillard Reaction in Fructose-Asparagine Model Solution and the Functional Characteristics of the Resultants. Polymers (Basel) 2022; 14:polym14081565. [PMID: 35458315 PMCID: PMC9031937 DOI: 10.3390/polym14081565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
The objectives of this study were to evaluate the effect of 0.5% chitosan incorporation on acrylamide development in a food model solution containing 0.5% fructose and asparagine after heating for 30 min at 180 °C. All the solutions were investigated for the following characteristics: acrylamide, asparagine, reducing sugar content, color, kinematic viscosity, Maillard reaction products (MRPs), and pH every 10 min. After heating for 10 min, the viscosity of chitosan-containing solutions reduced significantly. The investigational data confirmed that chitosan may have decomposed into lower molecular structures, as demonstrated by the reduced viscosity of the solution at pH < 6 and a decrease in the acrylamide content during 30 min of heating in a fructose−asparagine system. This study also confirms that the formation of ultraviolet-absorbing intermediates and browning intensity of MRPs containing acrylamide prepared by fructose−asparagine was more than those of MRPs prepared by glucose−asparagine solution system. MRPs containing acrylamide resulted from the reaction of asparagine with fructose (ketose) rather than glucose (aldose). Acrylamide formation could be significantly mitigated in the fructose−asparagine−chitosan model system as compared to the fructose−asparagine model system for possible beverage and food application.
Collapse
|
23
|
The Inhibitory Effect of Chitosan Based Films, Incorporated with Essential Oil of Perilla frutescens Leaves, against Botrytis cinerea during the Storage of Strawberries. Processes (Basel) 2022. [DOI: 10.3390/pr10040706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reduction in food waste, as well as non-invasive methods for extending the shelf-life of perishable fruits, are important global challenges. To achieve these objectives, in this paper, the use of natural compounds, chitosan films (CS) incorporated with essential oils from leaves, for postharvest fungal protection of strawberries is proposed. In the present study, the CS films incorporated with the essential oil from Perilla frutescens leaves (PFEO) at different concentrations were prepared and employed for packaging strawberries infected by B. cinerea during refrigerated storage at 4 °C for 10 days. Interestingly, the strawberries coated with CS films containing PFEO at 1.0% during this period possessed an effective antimicrobial effect against B. cinerea infection in potato dextrose agar (PDA). Moreover, the quality properties of the strawberries, (i.e., weight loss, firmness index, decay percentage, yeasts/molds, pH value, total soluble solids, titrable acidity, and maturity index), together with the sensory attributes (i.e., appearance, flavor, taste, and overall acceptability (p < 0.05 or p < 0.01)) were improved. These results demonstrated that (i) PFEO displayed a significant inhibitory effect against B. cinerea infection in strawberries, (ii) CS films containing PFEO at 1.0% could be a sustainable active food packaging for the refrigerated storage of strawberries.
Collapse
|
24
|
A Film of Chitosan Blended with Ginseng Residue Polysaccharides as an Antioxidant Packaging for Prolonging the Shelf Life of Fresh-Cut Melon. COATINGS 2022. [DOI: 10.3390/coatings12040468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginseng residue polysaccharides (GRP) at three levels were excellently blended into chitosan to form antioxidant composite films, which exhibited higher density, opacity and moisture, as well as lower water vapor permeability, tensile strength and elongation ratio than those of neat chitosan film. Thermogravimetry evidenced no difference in stability, and SEM and AFM revealed smooth and dense surfaces with no cracks and micropores, whereas structural analyses disclosed slight changes in films’ structures after adding GRP. A chitosan film containing 0.5% GRP (Chitosan + GRP) was then employed for a fruit preservation study. Fresh-cut melon covered with Chitosan + GRP displayed delayed deteriorating compared with other groups. A possible antioxidant mechanism in fruit preservation was then suggested, and PCA and correlation analyses supported these findings. The results demonstrated that our antioxidant chitosan films incorporated with GRP are quite promising for enabling the food industry to produce eco-friendly and sustainable packaging.
Collapse
|
25
|
Bleoanca I, Lanciu A, Patrașcu L, Ceoromila A, Borda D. Efficacy of Two Stabilizers in Nanoemulsions with Whey Proteins and Thyme Essential Oil as Edible Coatings for Zucchini. MEMBRANES 2022; 12:membranes12030326. [PMID: 35323801 PMCID: PMC8951633 DOI: 10.3390/membranes12030326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Edible coatings are important for horticulture crops preservation and reducing food waste. Application of edible coatings followed by low-temperature storage prolongs the storability, preserves quality, and decreases the overall postharvest losses. This study evaluated the efficacy of two nanoemulsions formulae containing thyme essential oil and whey proteins as coatings for zucchini, with the purpose of extending their shelf-life. The nanoemulsions were rheologically evaluated and the formula with guar and arabic gum mix stabilizer (S) showed a better capacity to restructure after strain compared to the formulae with Tween 20 (T). The S coating material had a better capacity to integrate nanoparticles compared to T. However, when applied on zucchini, T coating was more effective in reducing weight loss showing 16% weight loss compared to 21% in S, after 42 days. At the end of storage at 10 °C, the T-coated zucchini had better firmness (p < 0.05) compared with S and both coatings were superior to control (p < 0.05). POD (peroxidase) activity was high in peel at the end of storage when also CAT (catalase) showed a sudden increase. On the 42nd day of storage, the highest enzymes activity (CAT, POD, and APX (ascorbate peroxidase)) was present in the S-coated zucchini peel. The most abundant volatile in T coating was α-pinene and 4-carene in S. Sensory analysis showed that T coating delayed the appearance of senescence while S exhibited surface cracks.
Collapse
Affiliation(s)
- Iulia Bleoanca
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
| | - Andreea Lanciu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
| | - Livia Patrașcu
- Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania; (L.P.); (A.C.)
| | - Alina Ceoromila
- Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania; (L.P.); (A.C.)
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
- Correspondence: ; Tel.: +40-336-130-177
| |
Collapse
|
26
|
Rihayat T, Hadi AE, Aidy N, Safitri A, Siregar JP, Cionita T, Irawan AP, Hamdan MHM, Fitriyana DF. Biodegradation of Polylactic Acid-Based Bio Composites Reinforced with Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers (Basel) 2021; 13:4019. [PMID: 34833315 PMCID: PMC8620801 DOI: 10.3390/polym13224019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm-1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.
Collapse
Affiliation(s)
- Teuku Rihayat
- Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe 24301, Indonesia
| | - Agung Efriyo Hadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Malahayati, Bandar Lampung 35153, Indonesia;
| | - Nurhanifa Aidy
- Department of Renewable Energy Engineering, Universitas Malikussaleh, Muara Batu 24355, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Kota Medan 20222, Indonesia;
| | | | - Tezara Cionita
- Department of Mechanical Engineering, Faculty of Engineering and Quantity Surveying, INTI International University, Seremban 71800, Malaysia;
| | | | | | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Universitas Negeri Semarang, Semarang 50229, Indonesia;
| |
Collapse
|
27
|
Lin CX, Hsu HH, Chang YH, Chen SH, Lin SB, Lou SN, Chen HH. Expanding the Applicability of an Innovative Laccase TTI in Intelligent Packaging by Adding an Enzyme Inhibitor to Change Its Coloration Kinetics. Polymers (Basel) 2021; 13:polym13213646. [PMID: 34771203 PMCID: PMC8587941 DOI: 10.3390/polym13213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Enzymatic time–temperature indicators (TTIs) usually suffer from instability and inefficiency in practical use as food quality indicator during storage. The aim of this study was to address the aforementioned problem by immobilizing laccase on electrospun chitosan fibers to increase the stability and minimize the usage of laccase. The addition of NaN3, as and enzyme inhibitor, was intended to extend this laccase TTI coloration rate and activation energy (Ea) range, so as to expand the application range of TTIs for evaluating changes in the quality of foods during storage. A two-component time–temperature indicator was prepared by immobilizing laccase on electrospun chitosan fibers as a TTI film, and by using guaiacol solution as a coloration substrate. The color difference of the innovative laccase TTI was discovered to be <3, and visually indistinguishable when OD500 reached 3.2; the response reaction time was regarded as the TTI’s coloration endpoint. Enzyme immobilization and the addition of NaN3 increased coloration Km and reduced coloration Vmax. The coloration Vmax decreased to 64% when 0.1 mM NaN3 was added to the TTI, which exhibited noncompetitive inhibition and a slower coloration rate. Coloration hysteresis appeared in the TTI with NaN3, particularly at low temperatures. For TTI coloration, the Ea increased to 29.92–66.39 kJ/mol when 15–25 μg/cm2 of laccase was immobilized, and the endpoint increased to 11.0–199.5 h when 0–0.10 mM NaN3 was added. These modifications expanded the applicability of laccase TTIs in intelligent food packaging.
Collapse
Affiliation(s)
- Cheng-Xuan Lin
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Hao-Hsin Hsu
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Yu-Hsuan Chang
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Shih-Hsin Chen
- Institute of Food Science and Technology, National Taiwan University, Roosevelt Road, Taipei City 10617, Taiwan;
| | - Shih-Bin Lin
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Shyi-Neng Lou
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Hui-Huang Chen
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
- Correspondence: ; Tel.: +886-3-931-7764
| |
Collapse
|
28
|
Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. Polymers (Basel) 2021; 13:polym13193331. [PMID: 34641147 PMCID: PMC8512445 DOI: 10.3390/polym13193331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, chitosan nanoparticles (CNPs) were prepared by the ionic gelation technique with tripolyphosphate (TPP), and the effect of CNP composition and physicochemical characteristics were evaluated. After the synthesis optimization, CNPs were used as carriers for a fish protein hydrolysate (FPH) with bioactive properties (CNPH). The physicochemical characteristics, antioxidant capacity and antimicrobial, antihypertensive and emulsifier properties of unloaded and loaded CNPs in a food system model were studied. CNPH showed a uniform particle distribution, size ~200 nm, high stability (zeta potential around 30 mV), radical scavenging activity and increased antimicrobial activity against Staphylococcus aureus, Shigella sonnei and Aeromonas hydrophila. Additionally, CNPH showed an angiotensin I-converting enzyme (ACE)-inhibitory activity of 63.6% and, when added to a food emulsion model, this system containing CNPs, with or without FHP, exhibited improved food emulsion stability. Thus, CNPs were able to carry the FPH while maintaining their bioactive properties and can be an alternative to the delivery of bioactive peptides with potential as an emulsion stabilizer for food applications.
Collapse
|