1
|
Talukder ME, Talukder MR, Pervez MN, Song H, Naddeo V. Bead-Containing Superhydrophobic Nanofiber Membrane for Membrane Distillation. MEMBRANES 2024; 14:120. [PMID: 38921487 PMCID: PMC11206126 DOI: 10.3390/membranes14060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
This study introduces an innovative approach to enhancing membrane distillation (MD) performance by developing bead-containing superhydrophobic sulfonated polyethersulfone (SPES) nanofibers with S-MWCNTs. By leveraging SPES's inherent hydrophobicity and thermal stability, combined with a nanostructured fibrous configuration, we engineered beads designed to optimize the MD process for water purification applications. Here, oxidized hydrophobic S-MWCNTs were dispersed in a SPES solution at concentrations of 0.5% and 1.0% by weight. These bead membranes are fabricated using a novel electrospinning technique, followed by a post-treatment with the hydrophobic polyfluorinated grafting agent to augment nanofiber membrane surface properties, thereby achieving superhydrophobicity with a water contact angle (WCA) of 145 ± 2° and a higher surface roughness of 512 nm. The enhanced membrane demonstrated a water flux of 87.3 Lm-2 h-1 and achieved nearly 99% salt rejection efficiency at room temperature, using a 3 wt% sodium chloride (NaCl) solution as the feed. The results highlight the potential of superhydrophobic SPES nanofiber beads in revolutionizing MD technology, offering a scalable, efficient, and robust membrane for salt rejection.
Collapse
Affiliation(s)
- Md Eman Talukder
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Md. Romon Talukder
- Department of Chemistry, Government Saadat College, Tangail, Dhaka 1903, Bangladesh;
| | - Md. Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| | - Hongchen Song
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| |
Collapse
|
2
|
He J, Xia S, Li W, Deng J, Lin Q, Zhang L. Resource recovery and valorization of food wastewater for sustainable development: An overview of current approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119118. [PMID: 37769472 DOI: 10.1016/j.jenvman.2023.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
The food processing industry is one of the world's largest consumers of potable water. Agri-food wastewater systems consume about 70% of the world's fresh water and cause at least 80% of deforestation. Food wastewater is characterized by complex composition, a wide range of pollutants, and fluctuating water quality, which can cause huge environmental pollution problems if discharged directly. In recent years, food wastewater has attracted considerable attention as it is considered to have great prospects for resource recovery and reuse due to its rich residues of nutrients and low levels of harmful substances. This review explored and compared the sources and characteristics of different types of food wastewater and methods of wastewater treatment. Particular attention was paid to the different methods of resource recovery and reuse of food wastewater. The diversity of raw materials in the food industry leads to different compositional characteristics of wastewater, which determine the choice and efficiency of wastewater treatment methods. Physicochemical methods, and biological methods alone or in combination have been used for the efficient treatment of food wastewater. Current approaches for recycling and reuse of food wastewater include culture substrates, agricultural irrigation, and bio-organic fertilizers, recovery of high-value products such as proteins, lipids, biopolymers, and bioenergy to alleviate the energy crisis. Food wastewater is a promising substrate for resource recovery and reuse, and its valorization meets the current international policy requirements regarding food waste and environment protection, follows the development trend of the food industry, and is also conducive to energy conservation, emission reduction, and economic development. However, more innovative biotechnologies are necessary to advance the effectiveness of food wastewater treatment and the extent of resource recovery and valorization.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - SuXuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
3
|
Pervez MN, Mishu MMR, Tanvir NP, Talukder ME, Cai Y, Telegin FY, Zhao Y, Naddeo V. Insights into the structures and properties of dyes in the Fenton catalytic process for treating wastewater effluent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10948. [PMID: 38062884 DOI: 10.1002/wer.10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
A notable level of apprehension exists over the adverse impacts of dye pollution on aquatic ecosystems and human well-being. The primary objective of this research is to assess the effectiveness of Fenton catalytic reactions in degrading 14 different commercial azo dyes (both single and double) present in aqueous solutions. The investigation focused on the function of dye structures, using a combination of experimental data and examination of theoretical factors. Dye degradation process was carried out at pH 3, and the concentrations of Fe2+ (10-4 mol/L), H2 O2 (2 × 10-3 mol/L), and dye (0.05 g/L). The findings revealed that dyes with a larger molecular weight were more effective at degrading (D%), with the overall degradation efficiency varying from 0% to 94%. Functional groups played an important role in degradation efficiency; for example, dyes with higher aromatic rings led to less D%, while a higher number of sulfonic, methyl, and nitro groups was responsible for better D%. Notably, the presence of OH groups in the backbone of dyes (AB 24, ABE 113, and MB 9) formed the Fe complex during the catalytic process, and the D% was minimal. On the other hand, theoretical quantum calculations such as the greater the JCLogP, highest occupied molecular orbital, and Dipole moment value, the higher the degradation efficiency. And dyes with low lowest unoccupied molecular orbital tended to have a better degradation efficiency. To some extent, UV-Vis spectral analysis was investigated to determine the degradation pathway, and the pseudo-second-order kinetic model fitted better in the degradation process. The overall experimental and theoretical findings suggested that dye degradation efficiency by the Fenton process is structure-dependent. PRACTITIONER POINTS: Insights into the role of azo dye structures-properties on degradation efficiency. Higher molecular weight and sulfonic groups containing dyes showed better degradation efficiency. Hydroxyl groups play the formation of the Fe complex during the degradation process. Higher values of HOMO and lower values of LUMO enhanced degradation efficiency. The pseudo-second-order (PSO) kinetic model obeyed the Fenton process.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Mst Monira Rahman Mishu
- Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Naim Pervez Tanvir
- Department of Chemistry, Patuakhali Govt. College, Patuakhali, Bangladesh
| | - Md Eman Talukder
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Felix Y Telegin
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University and Institute of Eco-Chongming, Shanghai, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
4
|
Wang M, Li L, Yan H, Liu X, Li K, Li Y, You Y, Yang X, Song H, Wang P. Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers (Basel) 2023; 15:4527. [PMID: 38231952 PMCID: PMC10707801 DOI: 10.3390/polym15234527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Confronting the pressing challenge of freshwater scarcity, polymeric membrane-based water treatment technology has emerged as an essential and effective approach. Poly(arylene ether)s (PAEs) polymers, a class of high-performance engineering thermoplastics, have garnered attention in recent decades as promising membrane materials for advanced water treatment approaches. The PAE-Based membranes are employed to resist the shortages of most common polymeric membranes, such as chemical instability, structural damage, membrane fouling, and shortened lifespan when deployed in harsh environments, owing to their excellent comprehensive performance. This article presents the advancements in the research of several typical PAEs, including poly(ether ether ketone) (PEEK), polyethersulfone (PES), and poly(arylene ether nitrile) (PEN). Techniques for membrane formation, modification strategies, and applications in water treatment have been reviewed. The applications encompass processes for oil/water separation, desalination, and wastewater treatment, which involve the removal of heavy metal ions, dyes, oils, and other organic pollutants. The commendable performance of these membranes has been summarized in terms of corrosion resistance, high-temperature resistance, anti-fouling properties, and durability in challenging environments. In addition, several recommendations for further research aimed at developing efficient and robust PAE-based membranes are proposed.
Collapse
Affiliation(s)
- Mengxue Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Lingsha Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Haipeng Yan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Xidi Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Yong You
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Huijin Song
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| |
Collapse
|
5
|
Pirzada AM, Ali I, Mallah NB, Maitlo G. Development of Novel PET-PAN Electrospun Nanocomposite Membrane Embedded with Layered Double Hydroxides Hybrid for Efficient Wastewater Treatment. Polymers (Basel) 2023; 15:4388. [PMID: 38006112 PMCID: PMC10674731 DOI: 10.3390/polym15224388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Layered double hydroxides (LDHs) with their unique structural chemistry create opportunities to be modified with polymers, making different nanocomposites. In the current research, a novel PET-PAN embedded with Mg-AI-LDH-PVA nanocomposite membrane was fabricated through electrospinning. SEM, EDX, FTIR, XRD, and AFM were carried out to investigate the structure and morphology of the nanocomposite membrane. The characterization of the optimized nanocomposite membrane showed a beadless, smooth structure with a nanofiber diameter of 695 nm. The water contact angle and tensile strength were 16° and 1.4 Mpa, respectively, showing an increase in the hydrophilicity and stability of the nanocomposite membrane by the addition of Mg-Al-LDH-PVA. To evaluate the adsorption performance of the nanocomposite membrane, operating parameters were achieved for Cr(VI) and methyl orange at pH 2.0 and pH 4.0, respectively, including contact time, adsorbate dose, and pollutant concentration. The adsorption data of the nanocomposite membrane showed the removal of 68% and 80% for Cr(VI) and methyl orange, respectively. The process of adsorption followed a Langmuir isotherm model that fit well and pseudo-2nd order kinetics with R2 values of 0.97 and 0.99, respectively. The recycling results showed the membrane's stability for up to five cycles. The developed membrane can be used for efficient removal of pollutants from wastewater.
Collapse
Affiliation(s)
- Abdul Majeed Pirzada
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Imran Ali
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Nabi Bakhsh Mallah
- Faculty of Engineering, Science and Technology, Hamdard University, Karachi 75210, Pakistan;
| | - Ghulamullah Maitlo
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| |
Collapse
|
6
|
Abdrabou D, Ahmed M, Hussein A, El-Sherbini T. Photocatalytic behavior for removal of methylene blue from aqueous solutions via nanocomposites based on Gd 2O 3/CdS and cellulose acetate nanofibers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99789-99808. [PMID: 37615907 PMCID: PMC10533607 DOI: 10.1007/s11356-023-28999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Efficient cleaning of contaminated water by photocatalysis has become an effective strategy in recent years due to its environmental and ecological designation. Cadmium sulfate (CdS) is an excellent photocatalyst in the visible region but has low quantum efficiency. In order to increase the photocatalytic efficiency, CdS was modified with gadolinium oxide (Gd2O3) and combined with graphene oxide (GO) nanoparticles. The estimated crystallite size (Ds) for Gd2O3, CdS/Gd2O3, and CdS/Gd2O3@GO was 29.6, 11.6, and 11.5 nm, respectively. The degradation of methylene blue (MB) reaches the highest values after 60 min under visible light irradiation with a dye concentration of (0.25 ppm). Whereas in powdered composition the efficiency of dye removal has been enhanced under UV irradiation, it reduced by increasing the MB concentration to 0.50 ppm with visible light irradiation. In addition, the CdS with/without Gd2O3 and GO were integrated into electrospun nanofibrous cellulose acetate (CA) through the electrospinning technique. The compounds of Gd2O3, CdS/Gd2O3, and CdS/Gd2O3/GO were encapsulated into CA nanofibers for the degradation of MB under visible and UV irradiation. The apparent rate constant (k) achieves a value of 0.006, 0.007, and 0.0013 min-1 while the removal efficiency reaches 41.02%, 54.71%, and 71.42% for Gd2O3@CA, CdS/Gd2O3@CA, and CdS/Gd2O3/GO@CA, respectively, after 60 min under UV irradiation.
Collapse
Affiliation(s)
- Dalia Abdrabou
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt.
| | - Mohamed Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Ali Hussein
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt
| | - Tharwat El-Sherbini
- Laboratory of Laser and New Materials, Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
7
|
Pervez MN, Yeo WS, Mishu MMR, Talukder ME, Roy H, Islam MS, Zhao Y, Cai Y, Stylios GK, Naddeo V. Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach. Sci Rep 2023; 13:9679. [PMID: 37322139 DOI: 10.1038/s41598-023-36431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano, Italy
| | - Wan Sieng Yeo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mst Monira Rahman Mishu
- Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Md Eman Talukder
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China.
| | - George K Stylios
- Research Institute for Flexible Materials, School of Textiles and Design, Heriot-Watt University, Galashiels, TD1 3HF, UK.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano, Italy.
| |
Collapse
|
8
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Abou-Elanwar AM, Oh J, Lee S, Kim Y. Selective separation of dye/salt mixture using diatomite-based sandwich-like membrane. CHEMOSPHERE 2023; 330:138725. [PMID: 37084900 DOI: 10.1016/j.chemosphere.2023.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
A novel nanofiltration membrane was developed by entrapping a layer of modified diatomaceous earth between two layers of electrospun polysulfone (E-PSf) nanofibers. The diatomaceous earth particles and the fabricated membrane were characterized using FTIR, SEM, EDS, zeta potential, and water contact angle techniques. The static adsorption and dynamic separation of pristine E-PSF and sandwich-like membranes for methylene blue (MB) with/without salt were investigated under different operating conditions. The Langmuir model suited the MB adsorption isotherm data with a linear regression correlation coefficient (R2) >0.9955. As pH increased, both flux and MB rejection of the sandwich-like membrane improved by up to 183.8 LMH and 99.7%, respectively, when operated under gravity. The water flux of the sandwich-like membrane was sharply increased by increasing the pressure up to 19,518.2 LMH at 4.0 bar. However, this came at the expense of MB rejection (10.93%) and reduced its practical impact. At a high salt concentration, the sandwich-like membrane also indicated remarkable dye/salt separation with a higher permeation of salt (<0.2% NaCl rejection) and MB rejection (>99%). The performance of the regenerated diatomaceous material and membrane was maintained during five cycles of operation compared to that of the original ones.
Collapse
Affiliation(s)
- Ali M Abou-Elanwar
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea; Chemical Engineering Pilot Plant Department, Engineering Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Jongmin Oh
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea
| | - Songbok Lee
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea
| | - Youngjin Kim
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea.
| |
Collapse
|
10
|
Pervez MN, Chen C, Li Z, Naddeo V, Zhao Y. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. CHEMOSPHERE 2022; 303:134934. [PMID: 35561775 DOI: 10.1016/j.chemosphere.2022.134934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The ability of organic ligands to change the structure of metal-organic frameworks (MOFs) in nature and influence their adsorption efficiency for arsenic species is enormous. The current work was designed to investigate the adsorption performance of cerium-based MOFs with tunable structures through the use of organic ligands (Ce-MOF-66 and Ce-MOF-808) towards arsenic species from water. The structural features of Ce-MOF-66 and Ce-MOF-808 with varying crystallinity, morphology, particle size, and surface area are considerably altered by organic ligands tuning, resulting in clearly distinct arsenate (As (V)) and arsenite (As (III)) adsorption capabilities. The experimental results showed that the Langmuir adsorption capacities of As (V) by Ce-MOF-66 and Ce-MOF-808 reached 355.67 and 217.80 mg/g, respectively, while for As (III) were 5.52 and 402.10 mg/g for Ce-MOF-66 and Ce-MOF-808, respectively. Except for the impact of PO43- on As (V), co-existing ions had no significant influence on adsorption, illustrating the high selectivity. Furthermore, to understand the structure and adsorption mechanism, two adsorbents were characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, specific surface area, Fourier transform infrared and X-ray photoelectron spectroscopy, in which identified that unsaturated sites and ligand exchange were the main adsorption mechanisms of As (V) and As (III). Overall, this research presents a novel approach for developing high-performance Ce-derived MOFs adsorbents to capture arsenic species.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China.
| |
Collapse
|