1
|
Oluwoye I, Tanaka S, Okuda K. Pilot-scale performance of gravity-driven ultra-high flux fabric membrane systems for removing small-sized microplastics in wastewater treatment plant effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121438. [PMID: 38861885 DOI: 10.1016/j.jenvman.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The ubiquitous nature and environmental impacts of microplastic particles and fibers demand effective solutions to remove such micropollutants from sizable point sources, including wastewater treatment plants and road runoff facilities. While advanced methods, e.g., microfiltration and ultrafiltration, have shown high removal efficiencies of small-sized microplastics (<150 μm), the low flux encountered in these systems implies high operation costs and makes them less effective in high-capacity wastewater facilities. The issue presents new opportunities for developing cheap high-flux membrane systems, deployable in low-to high-income economies, to remove small-sized microplastic and nanoplastics in wastewater. Here, we report on developing an ultra-high flux gravity-driven fabric membrane system, assessed through a laboratory-scale filtration and large-scale performance in an actual wastewater treatment plant (WWTP). The method followed a carefully designed water sampling, pre-treatment protocol, and analytical measurements involving Fourier transform infrared (FTIR) spectroscopy and laser direct infrared (LDIR) imaging. The result shows that the ultra-high flux (permeance = 550,000 L/m2h⋅bar) fabric membrane system can effectively remove small-sized microplastics (10-300 μm) in the secondary effluent of an actual WWTP at high efficiency greater than 96 %. The pilot system demonstrated a continuous treatment capacity of 300,000 L/day through a 1 m2 surface area disc, with steady removal rates of microplastics. These findings demonstrate the practical, cheap, and sustainable removal of small-sized microplastics in wastewater treatment plants, and their potential value for other large-scale point sources, e.g., stormwater treatment facilities.
Collapse
Affiliation(s)
- Ibukun Oluwoye
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan; Curtin Corrosion Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan
| | - Kensuke Okuda
- Metawater R&D Center, Water Regeneration Technology Development Department, Tokyo, 101-0041, Japan
| |
Collapse
|
2
|
Lee U, Park K, Chang S, Cho M, Lee J. Feasibility evaluation of near dissolved organic matter microfiltration (NDOM MF) for the efficient removal of microplastics in the water treatment process. CHEMOSPHERE 2024; 356:141882. [PMID: 38582163 DOI: 10.1016/j.chemosphere.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Microfiltration (MF) using membranes with a mean pore size smaller than 0.45 μm has generally been used for particle removal from water, given that materials larger and smaller than 0.45 μm are regarded as particulates and dissolved organic matter (DOM), respectively. It is also the case for removing small-size microplastics (MPs). However, given their sizes (ca. 1 μm), there is room for further improvement of the productivity (i.e., water flux) in the pore size range of 0.45-1 μm on the condition that the removal rate is maintained. With this in mind, MF's water flux and removal rate were tested using seven different MF membranes, and the right pore, with the size of 0.8 μm, was found for MP removal, which is called near DOM (NDOM) MF. In the filtration test using polystyrene surrogate beads with an average particle diameter of 1.20 μm, NDOM MF exhibited a 1.7 to 13 times higher permeate flux than the conventional MF using 0.1, 0.2, and 0.45 μm membranes while maintaining a higher removal rate than 2 log. The excellent removal rate of the NDOM MF was attributable to the following three factors: (1) smaller mean pore size than the average particle diameter, (2) particle screening effect enhanced by the secondary layer formed by surface deposition, and (3) 3D mesh sublayer structure favorable for capturing penetrated particles. Furthermore, the outstanding filtration performance also appeared in a low-temperature (< 10°C) process, demonstrating that NDOM MF is feasible independently of temperature. Additionally, in constant flux filtration, NDOM MF demonstrated the long-term feasibility by lowering the transmembrane pressure and specific filtration energy by more than 2 times.
Collapse
Affiliation(s)
- Uje Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
3
|
Rasouli Y, Barbeau B, Maltais-Tariant R, Boudoux C, Claveau-Mallet D. Impact of Cleaning on Membrane Performance during Surface Water Treatment: A Hybrid Process with Biological Ion Exchange and Gravity-Driven Membranes. MEMBRANES 2024; 14:33. [PMID: 38392660 PMCID: PMC10890121 DOI: 10.3390/membranes14020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
In this study, the hybrid biological ion exchange (BIEX) resin and gravity-driven membrane (GDM) process was employed for the treatment of coloured and turbid river water. The primary objective was to investigate the impact of both physical and chemical cleaning methods on ceramic and polymeric membranes in terms of their stabilised flux, flux recovery after physical/chemical cleaning, and permeate quality. To address these objectives, two types of MF and UF membranes were utilised (M1 = polymeric MF, M2 = polymeric UF, M3 = ceramic UF, and M4 = lab-made ceramic MF). Throughout the extended operation, the resin functioned initially in the primary ion exchange (IEX) region (NOM displacement with pre-charged chloride) and progressed to a secondary IEX stage (NOM displacement with bicarbonate and sulphate), while membrane flux remained stable. Subsequently, physical cleaning involved air/water backwash with two different flows and pressures, and chemical cleaning utilised NaOH at concentrations of 20 and 40 mM, as well as NaOCl at concentrations of 250 and 500 mg Cl2/L. These processes were carried out to assess flux recovery and identify fouling reversibility. The results indicate an endpoint of 1728 bed volumes (BVs) for the primary IEX region, while the secondary IEX continued up to 6528 BV. At the end of the operation, DOC and UVA254 removal in the effluent of the BIEX columns were 68% and 81%, respectively, compared to influent water. This was followed by 30% and 57% DOC and UVA254 removal using M4 (ceramic MF). The stabilised flux remained approximately 3.8-5.2 LMH both before and after the cleaning process, suggesting that membrane materials do not play a pivotal role. The mean stabilised flux of polymeric membranes increased after cleaning, whereas that of the ceramics decreased. Enhanced air-water backwash flow and pressure resulted in an increased removal of hydraulic reversible fouling, which was identified as the dominant fouling type. Ceramic membranes exhibited a higher removal of reversible hydraulic fouling than polymeric membranes. Chemical cleaning had a low impact on flux recovery; therefore, we recommend solely employing physical cleaning.
Collapse
Affiliation(s)
- Yaser Rasouli
- Department of Civil, Geological & Mining Engineering, Polytechnique Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Benoit Barbeau
- Department of Civil, Geological & Mining Engineering, Polytechnique Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Raphaël Maltais-Tariant
- Department of Engineering Physics, Polytechnique Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Caroline Boudoux
- Department of Engineering Physics, Polytechnique Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
- Castor Optics, Inc., St-Laurent, QC H3T 1J4, Canada
| | - Dominique Claveau-Mallet
- Department of Civil, Geological & Mining Engineering, Polytechnique Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Liu S, Jin R, Zhang J, Zhao Y, Shen M, Wang Y. Are algae a promising ecofriendly approach to micro/nanoplastic remediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166779. [PMID: 37660628 DOI: 10.1016/j.scitotenv.2023.166779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
How to reduce microplastic pollution in aquatic ecosystem has become the focus of the global attention. The re-removal of microplastics of wastewater treatment plant (WWTP) effluent is gradually being put on the agenda. Recently, algae have been used as an ecofriendly remediation strategy for microplastic removal. Microplastics in sewage can be removed by algae through interception, capture, and entanglement, and can also form heterogeneous aggregates with algae, thereby reducing their free suspensions. Algae can recover nitrogen and carbon from wastewater and can be made into biochar, biofertilizers, and biofuels. However, problematically, this technology has been in the laboratory research stage, and existing research results cannot provide effective basis for its application. Microplastic removal via algae is influenced by wastewater flow rate, microplastic types, and pollutants. Microplastics are only physically fixed by algae, and ensuring that microplastics do not re-enter the environment during resource and capacity recovery is also a key factor limiting the implementation of this technology. The topic of this paper is to discuss the performance of the current tertiary wastewater treatment process - algae process to remove microplastics. Algae can remove nitrogen and phosphorus pollutants in sewage and remove microplastics at the same time, which can realize energy recovery and reduce ecological risks of the effluent. Although algae combined tertiary sewage treatment is a green technology for microplastic removal, its application still needs to be explored. The key challenges that need to be addressed, from single laboratory conditions to complex conditions, from small-scale testing to large-scale simulations, lie ahead of the application of this friendly technology.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
5
|
Kim S, Hyeon Y, Park C. Microplastics' Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy. Molecules 2023; 28:6913. [PMID: 37836755 PMCID: PMC10574296 DOI: 10.3390/molecules28196913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam's measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs.
Collapse
Affiliation(s)
| | | | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Kook H, Cha M, Park C. Transport of emerging organic ultraviolet (UV) filters in ceramic membranes: Role of polyethylene (PE) microplastics. CHEMOSPHERE 2022; 309:136570. [PMID: 36155025 DOI: 10.1016/j.chemosphere.2022.136570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics can be considered potential carriers of emerging organic ultraviolet (UV) filters due to their considerable adsorption capacity in wastewater treatment. The adsorption behavior of organic UV filters, which are commonly contained in personal care products to preserve the skin against UV radiation, onto polyethylene (PE) microplastics were systematically studied to investigate their combined effects. Kinetics and isotherm analyses revealed that the adsorption of four organic UV filters onto PE microplastic surfaces followed a multi-rate and a heterogeneous multi-layer pattern. Several factors including salinity, microplastic size, and dosage also influenced the adsorption efficiency due to hydrophobic interactions. A bench-scale cross-flow ceramic membrane filtration experiment was investigated to evaluate the role of PE microplastics on the retention performance of organic UV filters. The retentions for organic UV filters were 34.2%-37.8% in the non-existence of PE microplastics. Conversely, organic UV filter retentions were significantly increased up to 82.2%-97.9% when they were adsorbed onto the PE microplastics, which were almost completely retained by the ceramic membrane. Therefore, organic UV filters can likely migrate and eventually be carried by PE microplastics, thus increasing the retention of both emerging organic UV filters and microplastics prior to discharge from wastewater treatment facilities.
Collapse
Affiliation(s)
- Heejin Kook
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Minju Cha
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
7
|
Functionalized boron nitride ceramic nanofiltration membranes for semiconductor wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|