1
|
Rouhollahi M, Mohammadi T, Mohammadi M, Tofighy MA. Fabrication of nanocomposite membranes containing Ag/GO nanohybrid for phycocyanin concentration. Sci Rep 2024; 14:22538. [PMID: 39341953 PMCID: PMC11439055 DOI: 10.1038/s41598-024-73719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
In this research, silver/graphene oxide (Ag/GO) nanohybrid was first synthesized and used in production of polysulfone (PSF) ultrafiltration (UF) membranes via phase inversion method for concentrating phycocyanin (PC) and treating methylene blue (MB) dye effluent. Designing the experiment (DOE) using Box-Behnken method by Design Expert software helped to calculate the optimal values of the variables under study. The studied variables included PSF polymer concentration, polyvinyl pyrrolidone (PVP) pore-former concentration and Ag/GO nanohybrid content, which were investigated for their effects on pure water flux (PWF) and MB pigment rejection. According to the results of the DOE, the membrane containing 19.485 wt% PSF, 0.043 wt% PVP and 0.987 wt% Ag/GO was selected as the optimal membrane. Due to the high price of PC as drug, and the importance of removing MB pigment from the effluent of dyeing and textile industries, the membranes were first optimized with MB pigment and then the optimal membrane was used for concentrating PC. The results showed that PWF reaches from 40.05 L.m- 2.h- 1 (LMH) for the neat membrane to 156.73 LMH for the optimized membrane, which shows about 4 times improvement. Compared to the neat membrane, flux recovery ratio (FRR) of the optimized membrane increased by about 20% and its total fouling (Rt) decreased by about 10%. Also, the results showed that the optimized membrane can remove 81.6% of MB, as well as to reject 93.8% of PC.
Collapse
Affiliation(s)
- Mahdi Rouhollahi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Mehdi Mohammadi
- Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Maryam Ahmadzadeh Tofighy
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
2
|
Young AH, Hotz N, Hawkins BT, Kabala ZJ. Inducing Deep Sweeps and Vortex Ejections on Patterned Membrane Surfaces to Mitigate Surface Fouling. MEMBRANES 2024; 14:21. [PMID: 38248711 PMCID: PMC10818955 DOI: 10.3390/membranes14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Patterned membrane surfaces offer a hydrodynamic approach to mitigating concentration polarization and subsequent surface fouling. However, when subjected to steady crossflow conditions, surface patterns promote particle accumulation in the recirculation zones of cavity-like spaces. In order to resolve this issue, we numerically subject a two-dimensional, patterned membrane surface to a rapidly pulsed crossflow. When combined with cavity-like spaces, such as the valleys of membrane surface patterns, a rapidly pulsed flow generates mixing mechanisms (i.e., the deep sweep and the vortex ejection) and disrupts recirculation zones. In only four pulses, we demonstrate the ability of these mechanisms to remove over half of the particles trapped in recirculation zones via massless particle tracking studies (i.e., numerical integration of the simulated velocity field). The results of this work suggest that when combined with a rapidly pulsed inlet flow, patterned membrane surfaces can not only alleviate concentration polarization and the surface fouling that follows but also reduce the need for traditional cleaning methods that require operational downtime and often involve the use of abrasive chemical agents.
Collapse
Affiliation(s)
- August H. Young
- Duke Center for WaSH-AID, Durham, NC 27701, USA;
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA;
| | - Nico Hotz
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA;
| | - Brian T. Hawkins
- Duke Center for WaSH-AID, Durham, NC 27701, USA;
- Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - Zbigniew J. Kabala
- Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
3
|
Aydoğdu Bİ, Tokatlı Demirok N, Yıkmış S. Modeling of Sensory Properties of Poppy Sherbet by Turkish Consumers and Changes in Quality Properties during Storage Process. Foods 2023; 12:3114. [PMID: 37628113 PMCID: PMC10452968 DOI: 10.3390/foods12163114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Poppy is an important edible plant containing bioactive components. This study aimed to produce good-tasting poppy sherbet by determining the content using a response surface methodology (RSM). At the same time, bioactive components, phenolic compounds, and color properties were investigated in optimum poppy sherbet during storage; 0.26 g of dried corn poppy flowers, 0.15 g of citric acid, and 4.29 g of sucrose values were the most promising, achieving high scores for color, smell, taste, and general acceptance from sensory properties (sensory score of 8.55 for color; 7.19 for smell; 8.38 for taste; 7.98 for general acceptability). A total of nine polyphenols were detected in the optimum poppy sherbet sample; gallic acid was the most common. There was no statistically significant difference between the samples stored on the 0th and 30th days regarding gallic acid content (23.886 ± 0.164 μg/mL, 23.403 ± 0.343 μg/mL) and protocatechuic acid (1.146 ± 0.048 μg/mL, 1.047 ± 0.038 μg/mL). Total flavonoid contents (TFC), total phenolic contents (TPC), CUPRAC (cupric ion reducing antioxidant capacity), DPPH (e free radical diphenylpicrylhydrazyl), total monomeric anthocyanin (TAC), and color values were found to decrease as the storage period increased. It was considered that a highly palatable and rich bioactive component product could be obtained.
Collapse
Affiliation(s)
- Behiye İncisu Aydoğdu
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdag 59030, Turkey; (B.İ.A.)
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdag 59030, Turkey; (B.İ.A.)
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, Tekirdag 59830, Turkey
| |
Collapse
|
4
|
Wu Q, Zhang H, Zhou Y, Tang Z, Li B, Fu T, Zhang Y, Zhu H. Core-Shell Structured Carbon@Al 2O 3 Membrane with Enhanced Acid Resistance for Acid Solution Treatment. MEMBRANES 2022; 12:1246. [PMID: 36557154 PMCID: PMC9784977 DOI: 10.3390/membranes12121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core-shell structured membrane fabricated on alumina ceramic substrates via a one-step in situ hydrothermal method. The acid resistance of the modified membrane was significantly improved due to the protection provided by a chemically stable carbon layer. After modification, the masses lost by the membrane in the hydrochloric acid solution and the acetic acid solution were sharply reduced by 90.91% and 76.92%, respectively. Kinetic models and isotherm models of adsorption were employed to describe acid adsorption occurring during the membrane process and indicated that the modified membrane exhibited pseudo-second-order kinetics and Langmuir model adsorption. Compared to the pristine membrane, the faster adsorption speed and the lower adsorption capacity were exhibited by the modified membrane, which further had a good performance with treating various kinds of acid solutions. Moreover, the modified membrane could be recycled without obvious flux decay. This modification method provides a facile and efficient strategy for the fabrication of acid-resistant membranes for use in extreme conditions.
Collapse
Affiliation(s)
- Qianlian Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources, Shaanxi University of Chinese Medicine, Xianyang 712038, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|