1
|
Badawy AA, El-Hofey SM, Shaban AM, Orif SE, Uyanıkgil Y, El-Magd MA. Camel milk extracellular vesicles/exosomes: a fascinating frontier in isolation and therapeutic potential. Food Funct 2024. [PMID: 39714264 DOI: 10.1039/d4fo04331f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Camel milk has a unique composition that sets it apart from other types of animal milk, which has captured the interest of medical and scientific communities. Extracellular vesicles (EVs) mainly contain exosomes (Exos, 30-200 nm) and microvesicles (MVs, 200-1000 nm). Camel milk EVs, particularly Exos, which we named EVs/Exos, have arisen as a fascinating area of scientific inquiry, holding enormous potential for the future of biomedicine due to their anticancer, antibacterial, antidiabetic nephropathy, and immunostimulatory impacts. Camel milk EVs/Exos affect the antioxidant status and oxidative stress differently depending on the target cells. They boosted ROS in cancer cells but improved the antioxidant state in healthy cells. Camel milk EVs/Exos have distinct exosomal lactoferrin and kappa casein mRNAs, which could be responsible for their anticancer and immunomodulatory effects. Due to the high fat content of milk, there is a lack of established protocols for the precise isolation of EVs/Exos from milk, despite the increasing interest in this area of study. This review highlighted the techniques employed for milk EV/Exo isolation and characterization, acknowledging the challenges faced by researchers and the latest advancements in overcoming these hurdles. This review also detailed the potential of camel milk EVs/Exos in therapeutic applications. This comprehensive analysis positions camel milk EVs/Exos at the forefront of scientific inquiry, paving the way for groundbreaking discoveries in the years to come.
Collapse
Affiliation(s)
- Abdelnaser A Badawy
- Biochemistry Department, Faculty of Medicine, Northern Border University, Arar City, Saudi Arabia
| | - Salma M El-Hofey
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Amira M Shaban
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University 62511, Egypt
| | - Sahar E Orif
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Stem Cells, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Stem Cells, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Cord Blood Cell - Tissue Research and Application Center, Ege University, İzmir, 35100, Turkiye
| | - Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| |
Collapse
|
2
|
El-Shazly SA, Alhejely A, Alghibiwi HK, Dawoud SFM, Sharaf-Eldin AM, Mostafa AA, Zedan AMG, El-Sadawy AA, El-Magd MA. Protective effect of magnetic water against AlCl 3-induced hepatotoxicity in rats. Sci Rep 2024; 14:24999. [PMID: 39443509 PMCID: PMC11500388 DOI: 10.1038/s41598-024-70391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to examine whether or not aluminum chloride (AlCl3)-induced hepatotoxicity might be mitigated using magnetic water (MW) in rats. This study involved 28 adult male rats randomly assigned into the following 4 groups (7 rats/group): normal control (Cnt), MW, AlCl3, and Al Cl3 + MW. The Cnt group orally received normal saline, the MW group drank MW ad libitum for 2 months, and the AlCl3 and AlCl3 + MW groups were orally administered AlCl3 (40 mg/kg b.w.) alone or in combination with MW for 2 months, respectively. MW reduced AlCl3 toxicity as proved at functional, molecular, and structural levels. Functionally, MW reduced serum levels of liver enzymes (ALT, AST, ALP, GGT), while increased total proteins, and albumin. MW also restored redox balance in the liver (lower MDA levels, higher activities of CAT and SOD enzymes, and upregulated expression of NrF2, HO-1, and GST genes. Molecularly, MW downregulated hepatic expression of the epigenetic (HDAC3), inflammatory (IL1β, TNFα, NFκβ), and endoplasmic reticulum stress (XBP1, BIP, CHOP) genes. Structurally, MW enhanced liver histology. With these results, we could conclude that MW has the potential to ameliorate the hepatotoxic effects of AlCl3 through targeting oxidative stress, inflammation, epigenesis, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Safaa A El-Shazly
- Department of Agricultural Animals and Nematodes, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amani Alhejely
- Department of Biology, University College in Darb, Jazan University, Al-Darb, 45142, Jazan, Saudi Arabia
| | - Hanan K Alghibiwi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa F M Dawoud
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Aisha M Sharaf-Eldin
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Azza A Mostafa
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amina M G Zedan
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amany A El-Sadawy
- Department of Agricultural Animals and Nematodes, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
| |
Collapse
|
3
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Guo Q, Dong Q, Xu W, Zhang H, Zhao X, He W, He Y, Zhao G. Metabolite profiling of camel milk and the fermentation bacteria agent TR1 fermented two types of sour camel milk using LC-MS in relation to their probiotic potentials. Heliyon 2024; 10:e35801. [PMID: 39220917 PMCID: PMC11365327 DOI: 10.1016/j.heliyon.2024.e35801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Camel milk is a nutrient-rich diet and fermentation affects its nutritional value and probiotic function. In this study, sour camel milk and oat jujube sour camel milk were prepared using fermentation bacteria agent TR1, and the metabolites of camel milk, sour camel milk and oat jujube sour camel milk were detected using a non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS).The results showed that the partial least squares discriminant analysis (PLS-DA) with 100 % accuracy and good predictive power detected 343 components in positive ion mode and 220 components in negative ion mode. The differential metabolites were mainly organic acids, amino acids, esters, vitamins and other substances contained in camel milk.It showed that there were significant differences in the metabolites of camel milk, sour camel milk and oat jujube sour camel milk. Based on the pathway enrichment analysis of the three dairy products in the KEGG database, 12 metabolic pathways mainly involved in the positive ion mode and 20 metabolic pathways mainly involved in the negative ion mode were identified. The main biochemical metabolic pathways and signal transduction pathways of the differential metabolites of the three dairy products were obtained. This study provides theoretical support for improving the nutritional quality and probiotic function of camel milk and fermented camel milk products and provides a basis for the development of relevant processing technologies and products for camel milk and fermented camel milk.
Collapse
Affiliation(s)
- Qingwen Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Qigeqi Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Weisheng Xu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiangyu Zhao
- The People's Bank of China Operation Office, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Yuxing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guofen Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Xu Q, Yang S, Zhang K, Liu Y, Li L, Qu S. Enhanced antibacterial activity of bovine milk exosome-based drug formulation against bacterial pathogens. Food Chem 2024; 447:139034. [PMID: 38493686 DOI: 10.1016/j.foodchem.2024.139034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Milk is not only a source of nutrients, but also contains exosomes (Exo) that can serve as a vehicle for drug delivery. Here, we obtained bovine milk Exo using three efficient methods, demonstrating high quality for commercial production. The optimized Exo displayed a size of 105.2 nm and an entrapment efficiency of 88.4 %. The Exo has been functionalized with a combination therapy comprising isobavachalcone (IS) and polymyxin B (PB), referred to as IP-Exo. The antibacterial efficacy of IP-Exo was significantly enhanced, enabling the elimination of 99 % of multidrug-resistant (MDR) bacterial pathogens in 4 h. Furthermore, scanning electron microscopy images demonstrated that the drug combination led to the complete dismantling of the bacterial structure. IP-Exo showed nearly 100 % microbial inhibition in fresh orange juice and accelerated wound healing in mouse models. Collectively, IP-Exo provides excellent potential for application within the food industry and animal husbandry as a defense against bacterial pathogens.
Collapse
Affiliation(s)
- Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuo Yang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Zhang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Kim NH, Kim J, Lee JY, Bae HA, Kim CY. Application of Milk Exosomes for Musculoskeletal Health: Talking Points in Recent Outcomes. Nutrients 2023; 15:4645. [PMID: 37960298 PMCID: PMC10647311 DOI: 10.3390/nu15214645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Milk is a nutrient-rich food source, and among the various milks, breast milk is a nutrient source provided by mothers to newborns in many mammals. Exosomes are nano-sized membranous extracellular vesicles that play important roles in cell-to-cell communication. Exosomes originate from endogenous synthesis and dietary sources such as milk. Discovered through electron microscopy as floating vesicles, the existence of exosomes in human milk was confirmed owing to a density between 1.10 and 1.18 g/mL in a sucrose gradient corresponding to the known density of exosomes and detection of MHC classes I and II, CD63, CD81, and CD86 on the vesicles. To date, milk exosomes have been used for treating many diseases, including cancers, and are widely proposed as promising carriers for the delivery of chemotherapeutic agents. However, few studies on milk exosomes focus on geriatric health, especially sarcopenia and osteoporosis related to bone and muscle. Therefore, the present study focused on milk exosomes and their cargoes, which are potential candidates for dietary supplements, and when combined with drugs, they can be effective in treating musculoskeletal diseases. In this review, we introduce the basic concepts, including the definition, various sources, and cargoes of milk exosomes, and exosome isolation and characterization methods. Additionally, we review recent literature on the musculoskeletal system and milk exosomes. Since inflammation and oxidative stress underly musculoskeletal disorders, studies reporting the antioxidant and anti-inflammatory properties of milk exosomes are also summarized. Finally, the therapeutic potential of milk exosomes in targeting muscle and bone health is proposed.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon-A Bae
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
7
|
Raj A, Shuklan P, Madan P, Chauhan K, Phogat J, Rani S. Comparative Attenuating Impact of Camel Milk and Insulin in Streptozotocin-Induced Diabetic Albino Rats. ACS OMEGA 2023; 8:29270-29280. [PMID: 37599985 PMCID: PMC10433336 DOI: 10.1021/acsomega.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
In this study, albino Wistar rats that have developed diabetes as a result of the drug streptozotocin (STZ) were treated with camel milk and insulin. For this, 36 rats were divided into six different (n = 6) groups: control, control + camel milk, diabetic control, insulin, camel milk, and combined camel milk + insulin. A 50 mg/kg intraperitoneal injection of STZ was used to induce diabetes. Rats with blood glucose levels exceeding 250 mg/dL after the induction of diabetes were taken into consideration for the study. The diabetic rats were treated with camel milk (50 mL/rat/day), insulin (6 units kg-1 b·wt/day), or their combination daily for 30 days. Throughout the course of the study, the rats' glucose levels and body weight were checked. In the diabetic control rats, a reduction in body weight and hyperglycemic condition was seen. Improvements in glycemic levels and weight gain were seen in the camel milk, insulin, and combined treatment groups compared to the diabetic control group; however, the combined treated group did not show the same degree of improvement as the alone treated group. Hematological changes in the diabetic control group included reductions in lymphocytes, platelets, total leukocyte count (TLC), and red blood cell (RBC) indices (mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), packed cell volume (PCV), and mean cell hemoglobin concentration (MCHC)). Each group that got insulin and camel milk separately and combined showed improvement in these changes. The liver, kidney, and pancreas in the diabetic control group had worsened morphological alterations. These histopathological alternations were significantly improved in the treatment groups. Hence, this study demonstrates the antidiabetic effects of camel milk in comparison to insulin. These findings highlight the potential of camel milk as an alternative therapy for diabetes, although further research is warranted to fully understand its mechanisms of action and long-term effects.
Collapse
Affiliation(s)
- Anshu Raj
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Priyanka Shuklan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Preety Madan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Khushboo Chauhan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jatin Phogat
- Department
of Biochemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Sudesh Rani
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
8
|
Liu C, Liu LX, Yang J, Liu YG. Exploration and analysis of the composition and mechanism of efficacy of camel milk. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|