1
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
2
|
Rasheed T, Ferry DB, Iqbal ZF, Imran M, Usman M. Cutting-edge developments in MXene-derived functional hybrid nanostructures: A promising frontier for next-generation water purification membranes. CHEMOSPHERE 2024; 357:141955. [PMID: 38614403 DOI: 10.1016/j.chemosphere.2024.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
A novel family of multifunctional nanomaterials called MXenes is quickly evolving, and it has potential applications that are comparable to those of graphene. This article provides a current explanation of the design and performance assessment of MXene-based membranes. The production of MXenes nanosheets are first described, with an emphasis on exfoliation, dispersion stability, and processability, which are essential elements for membrane construction. Further, critical discussion is also given to MXenes potential applications in Vacuum assisted filtration, casting method, Hot press method, electrospinning and electrochemical deposition and layer-by-layer assembly for the creation of MXene and MXene derived nanocomposite membranes. Additionally, the discussion is carried forward to give an insight to the modification methods for the construction of MXene-based membrane are described in the literature, including pure or intercalated nanomaterials, surface modifiers and miscellaneous two-dimensional nanomaterials. Furthermore, the review article highlights the potential utilization of MXene and MXene based membranes in separation and purification processes including removal of small organic molecules, heavy metals, oil-water separation and desalination. Finally, the perspective use of MXenes strong catalytic activity and electrical conductivity for specialized applications that are difficult for other nanomaterials to accomplish are discussed in conclusion and future prospectus section of the manuscript. Overall, important information is given to help the communities of materials science and membranes to better understand the potential of MXenes for creating cutting-edge separation and purification membranes.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Zeenat Fatima Iqbal
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan
| | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), Department of chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Cao Y, Xiong Z, Liang Q, Jiang WJ, Xia F, Du X, Zu L, Mudie S, Franks GV, Li D. Subnanometric Stacking of Two-Dimensional Nanomaterials: Insights from the Nanotexture Evolution of Dense Reduced Graphene Oxide Membranes. ACS NANO 2023; 17:5072-5082. [PMID: 36802483 DOI: 10.1021/acsnano.3c00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assembling two-dimensional (2D) nanomaterials into laminar membranes with a subnanometer (subnm) interlayer spacing provides a material platform for studying a range of nanoconfinement effects and exploring the technological applications related to the transport of electrons, ions and molecules. However, the strong tendency for 2D nanomaterials to restack to their bulk crystalline-like structure makes it challenging to control their spacing at the subnm scale. It is thus necessary to understand what nanotextures can be formed at the subnm scale and how they can be engineered experimentally. In this work, with dense reduced graphene oxide membranes as a model system, we combine synchrotron-based X-ray scattering and ionic electrosorption analysis to reveal that their subnanometric stacking can result in a hybrid nanostructure of subnm channels and graphitized clusters. We demonstrate that the ratio of these two structural units, their sizes and connectivity can be engineered by stacking kinetics through the reduction temperature to allow the realization of high-performance compact capacitive energy storage. This work highlights the great complexity of subnm stacking of 2D nanomaterials and provides potential methods to engineer their nanotextures at will.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wen-Jie Jiang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fang Xia
- Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Xiaoyang Du
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lianhai Zu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Mudie
- Small- and Wide-Angle X-ray Scattering Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - George V Franks
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Two-dimensional materials for gas separation membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Isfahani AP, Arabi Shamsabadi A, Soroush M. MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Pournaghshband Isfahani
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Construction of a Silver Nanoparticle Complex and its Application in Cancer Treatment. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-s8bc3p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine has been used in tumor treatment and research due to its advantages of targeting, controlled release and high absorption rate. Silver nanoparticle (AgNPs), with the advantages of small particle size, and large specific surface area, are of great potential value in suppressing and killing cancer cells. Methods: AgNPs–polyethyleneimine (PEI) –folate (FA) (AgNPs–PF) were synthesised and characterised by several analytical techniques. The ovarian cancer cell line Skov3 was used as the cell model to detect the tumor treatment activity of AgNPs, AgNPs–PF and AgNPs+ AgNPs–PF. Results: Results shown that AgNPs–PF were successfully constructed with uniform particle size of 50–70 nm. AgNPs, AgNPs–PF, AgNPs–PF+ AgNPs all showed a certain ability to inhibit cancer cell proliferation, increase reactive oxygen species and decrease the mitochondrial membrane potential. All AgNPs, AgNPs–PF, AgNPs+ AgNPs–PF promoted DNA damage in Skov3 cells, accompanied by the generation of histone RAD51 and γ-H2AX site, and eventually leading to the apoptosis of Skov3 cells. The combination of AgNPs–PF and AgNPs had a more pronounced effect than either material alone. Conclusion: This study is to report that the combination of AgNPs+ AgNPs–PF can cause stronger cytotoxicity and induce significantly greater cell death compared to AgNPs or AgNPs–PF alone in Skov3 cells. Therefore, the combined application of drugs could be the best way to cancer treatment.
Collapse
|
8
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Preparation and ion separation properties of sub-nanoporous PES membrane with high chemical resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Alekseeva OK, Pushkareva IV, Pushkarev AS, Fateev VN. Graphene and Graphene-Like Materials for Hydrogen Energy. NANOTECHNOLOGIES IN RUSSIA 2020; 15:273-300. [PMID: 33391617 PMCID: PMC7768998 DOI: 10.1134/s1995078020030027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
The review is devoted to current and promising areas of application of graphene and materials based on it for generating environmentally friendly hydrogen energy. Analysis of the results of theoretical and experimental studies of hydrogen accumulation in graphene materials confirms the possibility of creating on their basis systems for reversible hydrogen storage, which combine high capacity, stability, and the possibility of rapid hydrogen evolution under conditions acceptable for practical use. Recent advances in the development of chemically and heat-resistant graphene-based membrane materials make it possible to create new gas separation membranes that provide high permeability and selectivity and are promising for hydrogen purification in processes of its production from natural gas. The characteristics of polymer membranes that are currently used in industry for the most part can be significantly improved with small additions of graphene materials. The use of graphene-like materials as a support of nanoparticles or as functional additives in the composition of the electrocatalytic layer in polymer electrolyte membrane fuel cells makes it possible to improve their characteristics and to increase the activity and stability of the electrocatalyst in the reaction of oxygen evolution.
Collapse
Affiliation(s)
- O. K. Alekseeva
- National Research Center Kurchatov Institute, Moscow, Russia
| | | | - A. S. Pushkarev
- National Research Center Kurchatov Institute, Moscow, Russia
| | - V. N. Fateev
- National Research Center Kurchatov Institute, Moscow, Russia
| |
Collapse
|
11
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
12
|
Hydrogen Selective SiCH Inorganic-Organic Hybrid/γ-Al 2O 3 Composite Membranes. MEMBRANES 2020; 10:membranes10100258. [PMID: 32992911 PMCID: PMC7600925 DOI: 10.3390/membranes10100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Solar hydrogen production via the photoelectrochemical water-splitting reaction is attractive as one of the environmental-friendly approaches for producing H2. Since the reaction simultaneously generates H2 and O2, this method requires immediate H2 recovery from the syngas including O2 under high-humidity conditions around 50 °C. In this study, a supported mesoporous γ-Al2O3 membrane was modified with allyl-hydrido-polycarbosilane as a preceramic polymer and subsequently heat-treated in Ar to deliver a ternary SiCH organic–inorganic hybrid/γ-Al2O3 composite membrane. Relations between the polymer/hybrid conversion temperature, hydrophobicity, and H2 affinity of the polymer-derived SiCH hybrids were studied to functionalize the composite membranes as H2-selective under saturated water vapor partial pressure at 50 °C. As a result, the composite membranes synthesized at temperatures as low as 300–500 °C showed a H2 permeance of 1.0–4.3 × 10−7 mol m−2 s−1 Pa−1 with a H2/N2 selectivity of 6.0–11.3 under a mixed H2-N2 (2:1) feed gas flow. Further modification by the 120 °C-melt impregnation of low molecular weight polycarbosilane successfully improved the H2-permselectivity of the 500 °C-synthesized composite membrane by maintaining the H2 permeance combined with improved H2/N2 selectivity as 3.5 × 10−7 mol m−2 s−1 Pa−1 with 36. These results revealed a great potential of the polymer-derived SiCH hybrids as novel hydrophobic membranes for purification of solar hydrogen.
Collapse
|
13
|
Huang L, Liu J, Lin H. Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118253] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Huang L, Jia W, Lin H. Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AIChE J 2020. [DOI: 10.1002/aic.17022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Liang Huang
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Weiguang Jia
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| |
Collapse
|
15
|
Karahan HE, Goh K, Zhang CJ, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae TH. MXene Materials for Designing Advanced Separation Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906697. [PMID: 32484267 DOI: 10.1002/adma.201906697] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chuanfang John Zhang
- ETH Domain, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Euntae Yang
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- Department of Marine Environmental Engineering, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongnam, 53064, Republic of Korea
| | - Cansu Yıldırım
- Polymer Science and Technology Graduate Program, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Chong Yang Chuah
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - M Göktuğ Ahunbay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Jaewoo Lee
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | | | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
16
|
Properties Analysis and Preparation of Biochar–Graphene Composites Under a One-Step Dip Coating Method in Water Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to improve the adsorption efficiency of biochar in water treatment, biochar–graphene (BG) composites were prepared by the one-step dip coating method and applied to remove phthalates from water. Firstly, the materials and equipment needed for the experiment are introduced. The steps of preparing graphene oxide (GO) by the improved Hummers method and BG composites by one-step dip coating are discussed. Then, the morphology characterization, adsorption performance measurement, and isothermal model of BG composites are introduced. Finally, the structure characterization, adsorption kinetics, and adsorption isotherms of BG composites are analyzed. The results show that the properties of biochar could be changed by one-step dip coating, and the biochar could form composites with graphene. Compared with biochar, biochar–graphene composites have greater surface area and porosity. When the pyrolysis temperature was 600 °C, the specific surface area of biochar was 8.4 m2g−1, and the specific surface area of the biochar–graphene composite was 221.3 m2g−1. When the temperature was 300 °C, the specific surface area of biochar was 11.01 m2g−1, and the specific surface area of biochar–graphene composite was 251.82 m2g−1. The formation of graphene on the surface of biochar can increase the stability of the composite and acts as a very high potential active site. The porous structure and surface properties of biochar–graphene composites regulate the adsorption rate of pollutant molecules, thereby improving the adsorption performance. When the adsorption equilibrium was reached, the adsorption effect of phthalate esters on the biochar/graphene composite at the pyrolysis temperature of 600 °C was the best, and the adsorption capacity of Dimethyl phthalate (DMP)was 35.2 mg/g, that of Diethyl phthalate (DEP) was 26.4 mg/g, and that of Dibutyl phthalate (DBP) was 25.1 mg/g. The adsorption effect of DMP was the best. The results of the isotherm study indicate that the adsorption of phthalates by BG composites has great potential, which provides a good theoretical basis for the application of BG composites in environmental protection in China.
Collapse
|
17
|
Kamble AR, Patel CM, Murthy ZVP. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO 2, N 2 and CH 4 separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110256. [PMID: 32090882 DOI: 10.1016/j.jenvman.2020.110256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Increasing concerns on global warming and climate change have led to numerous attempts on developing new membrane materials to reduce excessive CO2 emission into the atmosphere. In the present work, we focused on the separation of CO2 from gas mixtures through two-dimensional (2D) materials based mixed matrix membranes (MMMs). The ionic liquid (IL) 1-Ethyl-3methylimidazolium bis (trifluoromethylsulfonyl) imide together with different weight fractions (0.5-1.5 wt %) 2D materials, such as molybdenum disulfide (MoS2) and hexagonal boron nitride (h-BN), were homogenously blended to prepare polyether sulfone (PES) MMMs. The main aim was to investigate the effect of the addition of 2D materials on the gas separation/permeation properties of the PES membranes. Pure gas permeation for N2, CO2, and CH4 and binary gas mixtures separation for CO2/N2 and CO2/CH4 were investigated through pure PES and modified PES membranes. The prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and water contact angle tests. The gas permeabilities were found to be improved by average 15-20 times higher compared to pure PES. The [Formula: see text] and [Formula: see text] were improved up to 124% and 18% using PES/h-BN (1 wt %)/IL and PES/MoS2 (1.5 wt %)/IL combination, respectively. In overall, 2D materials and IL together as a filler into PES matrix revealed a significant improvement in the gas separation/permeation properties of PES and can be considered as a competent membrane for CO2/CH4 and CO2/N2 separation.
Collapse
Affiliation(s)
- Ashwin R Kamble
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Chetan M Patel
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
18
|
Cai W, Cheng X, Chen X, Li J, Pei J. Poly(vinyl alcohol)-Modified Membranes by Ti 3C 2T x for Ethanol Dehydration via Pervaporation. ACS OMEGA 2020; 5:6277-6287. [PMID: 32258862 PMCID: PMC7114143 DOI: 10.1021/acsomega.9b03388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
In this paper, PVA/Ti3C2T x mixed matrix membranes (MMMs) were prepared by mixing the synthesized Ti3C2T x with the PVA matrix, and the pervaporation (PV) performance of the ethanol-water binary system was tested. The morphology, structural properties, and surface characteristics of the membranes were investigated by scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, degree of swelling, and water contact angle. The PVA/Ti3C2T x MMMs exhibit excellent compatibility and swelling resistance. Moreover the effects of the Ti3C2T x filling level, feed concentration, and operating temperature on the ethanol dehydration performance were systematically studied. The results demonstrated that the separation factor of PVA/Ti3C2T x MMMs was significantly increased because of Ti3C2T x promoting the cross-linking density of the membrane. Specifically, the membrane showed the best PV performance when Ti3C2T x loading was 3.0 wt %, achieving a separation factor of 2585 and a suitable total flux of 0.074 kg/m2 h for separating 93 wt % ethanol solution at 37 °C.
Collapse
Affiliation(s)
- Weibin Cai
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xue Cheng
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiaohan Chen
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Jiding Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junqi Pei
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
19
|
Amino-functionalized POSS nanocage intercalated graphene oxide membranes for efficient biogas upgrading. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117733] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Alen SK, Nam S, Dastgheib SA. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. Int J Mol Sci 2019; 20:E5609. [PMID: 31717532 PMCID: PMC6888465 DOI: 10.3390/ijms20225609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Graphene oxide (GO) can dramatically enhance the gas separation performance of membrane technologies beyond the limits of conventional membrane materials in terms of both permeability and selectivity. Graphene oxide membranes can allow extremely high fluxes because of their ultimate thinness and unique layered structure. In addition, their high selectivity is due to the molecular sieving or diffusion effect resulting from their narrow pore size distribution or their unique surface chemistry. In the first part of this review, we briefly discuss different mechanisms of gas transport through membranes, with an emphasis on the proposed mechanisms for gas separation by GO membranes. In the second part, we review the methods for GO membrane preparation and characterization. In the third part, we provide a critical review of the literature on the application of different types of GO membranes for CO2, H2, and hydrocarbon separation. Finally, we provide recommendations for the development of high-performance GO membranes for gas separation applications.
Collapse
Affiliation(s)
- Saif Khan Alen
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA; (S.K.A.); (S.N.)
| | - SungWoo Nam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA; (S.K.A.); (S.N.)
| | - Seyed A. Dastgheib
- Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 615 East Peabody Drive, Champaign, IL 61820, USA
| |
Collapse
|