1
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
2
|
Malara A, Bonaccorsi L, Fotia A, Antonucci PL, Frontera P. Hybrid Fluoro-Based Polymers/Graphite Foil for H 2/Natural Gas Separation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2105. [PMID: 36903218 PMCID: PMC10004322 DOI: 10.3390/ma16052105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on the development of novel structured materials for gas separation applications, including the combination of various kind of additives in polymeric matrix. Numerous gas pairs have been investigated and the gas transport mechanism in those membranes has been elucidated. However, the selective separation of high purity hydrogen from hydrogen/methane mixtures is still a big challenge and nowadays needs a great improvement to promote the transition towards more sustainable energy source. In this context, because of their remarkable properties, fluoro-based polymers, such as PVDF-HFP and NafionTM, are among the most popular membrane materials, even if a further optimization is needed. In this study, hybrid polymer-based membranes were deposited as thin films on large graphite surfaces. Different weight ratios of PVDF-HFP and NafionTM polymers supported over 200 μm thick graphite foils were tested toward hydrogen/methane gas mixture separation. Small punch tests were carried out to study the membrane mechanical behaviour, reproducing the testing conditions. Finally, the permeability and the gas separation activity of hydrogen/methane over membranes were investigated at room temperature (25 °C) and near atmospheric pressure (using a pressure difference of 1.5 bar). The best performance of the developed membranes was registered when the 4:1 polymer PVDF-HFP/NafionTM weight ratio was used. In particular, starting from the 1:1 hydrogen/methane gas mixture, a 32.6% (v%) H2 enrichment was measured. Furthermore, there was a good agreement between the experimental and theoretical selectivity values.
Collapse
Affiliation(s)
- Angela Malara
- Department of Civil, Energy, Environmental and Material Engineering, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Lucio Bonaccorsi
- Department of Civil, Energy, Environmental and Material Engineering, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Antonio Fotia
- Department of Civil, Energy, Environmental and Material Engineering, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Pier Luigi Antonucci
- CNR, Institute of Advanced Technologies for Energy “Nicola Giordano”—ITAE, 98122 Messina, Italy
| | - Patrizia Frontera
- Department of Civil, Energy, Environmental and Material Engineering, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
3
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
4
|
Woźny M, Mames A, Ratajczyk T. Triptycene Derivatives: From Their Synthesis to Their Unique Properties. Molecules 2021; 27:250. [PMID: 35011478 PMCID: PMC8746337 DOI: 10.3390/molecules27010250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been reported by researchers from various fields of science. Here, an account of these new developments is given and placed in reference to earlier pivotal works that underpin the field. First, we discuss new approaches to the synthesis of new triptycenes. Progress in the regioselective synthesis of sterically demanding systems is discussed. The application of triptycenes in catalysis is also presented. Next, progress in the understanding of the relations between triptycene structures and their properties is discussed. The unique properties of triptycenes in the liquid and solid states are elaborated. Unique interactions, which involve triptycene molecular scaffolds, are presented. Molecular interactions within a triptycene unit, as well as between triptycenes or triptycenes and other molecules, are also evaluated. In particular, the summary of the synthesis and useful features will be helpful to researchers who are using triptycenes as building blocks in the chemical and materials sciences.
Collapse
Affiliation(s)
- Mateusz Woźny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Belov NA, Pashkevich DS, Alentiev AY, Tressaud A. Effect of Direct Fluorination on the Transport Properties and Swelling of Polymeric Materials: A Review. MEMBRANES 2021; 11:membranes11090713. [PMID: 34564530 PMCID: PMC8469444 DOI: 10.3390/membranes11090713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Fluorine-containing polymers occupy a peculiar niche among conventional polymers due to the unique combination of physicochemical properties. Direct surface fluorination of the polymeric materials is one of the approaches for the introduction of fluorine into the chemical structure that allows one to implement advantages of fluorinated polymers in a thin layer. Current review considers the influence of the surface interaction of the polymeric materials and membranes with elemental fluorine on gas, vapor and liquid transport as well as swelling and related phenomena. The increase in direct fluorination duration and concentration of fluorine in the fluorination mixture is shown to result mostly in a reduction of all penetrants permeability to a different extent, whereas selectivity of the selected gas pairs (He-H2, H2-CH4, He-CH4, CO2-CH4, O2-N2, etc.) increases. Separation parameters for the treated polymeric films approach Robeson's upper bounds or overcome them. The most promising results were obtained for highly permeable polymer, polytrimethylsilylpropyne (PTMSP). The surface fluorination of rubbers in printing equipment leads to an improved chemical resistance of the materials towards organic solvents, moisturizing solutions and reduce diffusion of plasticizers, photosensitizers and other components of the polymeric blends. The direct fluorination technique can be also considered one of the approaches of fabrication of fuel cell membranes from non-fluorinated polymeric precursors that improves their methanol permeability, proton conductivity and oxidative stability.
Collapse
Affiliation(s)
- Nikolay A. Belov
- Engineering Center, Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (D.S.P.); (A.Y.A.)
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninskii Prospect, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-926-432-8323
| | - Dmitrii S. Pashkevich
- Engineering Center, Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (D.S.P.); (A.Y.A.)
- Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, 195251 St. Petersburg, Russia
| | - Alexandre Yu Alentiev
- Engineering Center, Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (D.S.P.); (A.Y.A.)
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninskii Prospect, 119991 Moscow, Russia
| | - Alain Tressaud
- Institut de Chimie de la Matière Condensée de Bordeaux ICMCB-CNRS, Université Bordeaux, 87, Av. Dr A. Schweitzer, 33608 Pessac, France;
| |
Collapse
|
7
|
Elisiário MP, De Wever H, Van Hecke W, Noorman H, Straathof AJJ. Membrane bioreactors for syngas permeation and fermentation. Crit Rev Biotechnol 2021; 42:856-872. [PMID: 34525894 DOI: 10.1080/07388551.2021.1965952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Syngas fermentation to biofuels and chemicals is an emerging technology in the biobased economy. Mass transfer is usually limiting the syngas fermentation rate, due to the low aqueous solubilities of the gaseous substrates. Membrane bioreactors, as efficient gas-liquid contactors, are a promising configuration for overcoming this gas-to-liquid mass transfer limitation, so that sufficient productivity can be achieved. We summarize the published performances of these reactors. Moreover, we highlight numerous parameters settings that need to be used for the enhancement of membrane bioreactor performance. To facilitate this enhancement, we relate mass transfer and other performance indicators to the type of membrane material, module, and flow configuration. Hollow fiber modules with dense or asymmetric membranes on which biofilm might form seem suitable. A model-based approach is advocated to optimize their performance.
Collapse
Affiliation(s)
- Marina P Elisiário
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Wang J, Shi Z, Zang Y, Jia H, Teraguchi M, Kaneko T, Aoki T. Macromolecular Design for Oxygen/Nitrogen Permselective Membranes-Top-Performing Polymers in 2020. Polymers (Basel) 2021; 13:3012. [PMID: 34503051 PMCID: PMC8433776 DOI: 10.3390/polym13173012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
Oxygen/nitrogen permselective membranes play particularly important roles in fundamental scientific studies and in a number of applications in industrial chemistry, but have not yet fulfilled their full potential. Organic polymers are the main materials used for such membranes because of the possibility of using sophisticated techniques of precise molecular design and their ready processability for making thin and large self-supporting membranes. However, since the difference in the properties of oxygen and nitrogen gas molecules is quite small, for example, their kinetic diameters are 3.46 Å and 3.64 Å, respectively, the architectures of the membrane macromolecules should be designed precisely. It has been reported often that oxygen permeability (PO2) and oxygen permselectivity (α = PO2/PN2) have trade-off relationships for symmetric membranes made from pure polymers. Some empirical upper bound lines have been reported in (ln α - ln PO2) plots since Robeson reported an upper bound line in 1991 for the first time. The main purpose of this review is to discuss suitable macromolecular structures that produce excellent oxygen/nitrogen permselective membranes. For this purpose, we first searched extensively and intensively for papers which had reported α and PO2 values through symmetric dense membranes from pure polymers. Then, we examined the chemical structures of the polymers showing the top performances in (ln α - ln PO2) plots, using their aged performances. Furthermore, we also explored progress in the molecular design in this field by comparing the best polymers reported by 2013 and those subsequently found up to now (2020) because of the rapid outstanding growth in this period. Finally, we discussed how to improve α and PO2 simultaneously on the basis of reported results using not only symmetric membranes of pure organic polymers but also composite asymmetric membranes containing various additives.
Collapse
Affiliation(s)
- Jianjun Wang
- Key Laboratory of Polymeric Composition Material of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.W.); (Y.Z.); (H.J.)
| | - Zhichun Shi
- Technology Innovation Center of Industrial Cannabis Processing of Heilongjiang Province, College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China;
| | - Yu Zang
- Key Laboratory of Polymeric Composition Material of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.W.); (Y.Z.); (H.J.)
| | - Hongge Jia
- Key Laboratory of Polymeric Composition Material of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.W.); (Y.Z.); (H.J.)
| | - Masahiro Teraguchi
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-Ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| | - Takashi Kaneko
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-Ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| | - Toshiki Aoki
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-Ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| |
Collapse
|
9
|
Guo S, Swager TM. Versatile Porous Poly(arylene ether)s via Pd-Catalyzed C-O Polycondensation. J Am Chem Soc 2021; 143:11828-11835. [PMID: 34313420 DOI: 10.1021/jacs.1c05853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous organic polymers (POPs) with strong covalent linkages between various rigid aromatic structural units having different geometries and topologies are reported. With inherent porosity, predictable structure, and tunable functionality, POPs have found utility in gas separation, heterogeneous catalysis, sensing, and water treatment. Poly(arylene ether)s (PAEs) are a family of high-performance thermoplastic materials with high glass-transition temperatures, exceptional thermal stability, robust mechanical properties, and excellent chemical resistance. These properties are desirable for development of durable POPs. However, the synthetic methodology for the preparation of these polymers has been mainly limited in scope to monomers capable of undergoing nucleophilic aromatic substitution (SNAr) reactions. Herein, we describe a new general method using Pd-catalyzed C-O polycondensation reactions for the synthesis of PAEs. A wide range of new compositions and PAE architectures are now readily available using monomers with unactivated aryl chlorides and bromides. Specifically, monomers with conformational rigidity and intrinsic internal free volume are now used to create porous organic polymers with high molecular weight, good thermal stability, and porosity. The reported porous PAEs are solution processable and can be used in environmentally relevant applications including heavy-metal-ion sensing and capture.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
|
11
|
Oprea M, Voicu SI. Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2481. [PMID: 32486050 PMCID: PMC7321373 DOI: 10.3390/ma13112481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
The development of novel polymeric composites based on cellulose derivatives and hydroxyapatite represents a fascinating and challenging research topic in membranes science and technology. Cellulose-based materials are a viable alternative to synthetic polymers due to their favorable physico-chemical and biological characteristics. They are also an appropriate organic matrix for the incorporation of hydroxyapatite particles, inter and intramolecular hydrogen bonds, as well as electrostatic interactions being formed between the functional groups on the polymeric chains surface and the inorganic filler. The current review presents an overview on the main application fields of cellulose derivatives/hydroxyapatite composite membranes. Considering the versatility of hydroxyapatite particles, the hybrid materials offer favorable prospects for applications in water purification, tissue engineering, drug delivery, and hemodialysis. The preparation technique and the chemical composition have a big influence on the final membrane properties. The well-established membrane fabrication methods such as phase inversion, electrospinning, or gradual electrostatic assembly are discussed, together with the various strategies employed to obtain a homogenous dispersion of the inorganic particles in the polymeric matrix. Finally, the main conclusions and the future directions regarding the preparation and applications of cellulose derivatives/hydroxyapatite composite membranes are presented.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Material Science, University Polytehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
12
|
Talluri VSSLP, Patakova P, Moucha T, Vopicka O. Transient and Steady Pervaporation of 1-Butanol-Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane. Polymers (Basel) 2019; 11:polym11121943. [PMID: 31779231 PMCID: PMC6960892 DOI: 10.3390/polym11121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022] Open
Abstract
The transient and steady pervaporation of 1-butanol-water mixtures through a poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membrane was studied to observe and elucidate the diffusion phenomena in this high-performing organophilic glassy polymer. Pervaporation was studied in a continuous sequence of experiments under conditions appropriate for the separation of bio-butanol from fermentation broths: feed concentrations of 1.5, 3.0 and 4.5 w/w % of 1-butanol in nutrient-containing (yeast extract) water, temperatures of 37, 50 and 63 °C, and a time period of 80 days. In addition, concentration polarization was assessed. As expected, the total flux and individual component permeabilities declined discernibly over the study period, while the separation factor (average β = 82) and selectivity towards 1-butanol (average α = 2.6) remained practically independent of the process conditions tested. Based on measurements of pervaporation transients, for which a new apparatus and model were developed, we found that the diffusivity of 1-butanol in PTMSP decreased over time due to aging and was comparable to that observed using microgravimetry in pure vapor in 1-butanol. Hence, despite the gradual loss of free volume of the aging polymer, the PTMSP membrane showed high and practically independent selectivity towards 1-butanol. Additionally, a new technique for the measurement and evaluation of pervaporation transients using Fourier transform infrared spectroscopy (FTIR) analysis of permeate was proposed and validated.
Collapse
Affiliation(s)
- VSSL Prasad Talluri
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (V.P.T.); (P.P.)
- Chemical Engineering Department, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (V.P.T.); (P.P.)
| | - Tomas Moucha
- Chemical Engineering Department, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic;
| | - Ondrej Vopicka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Correspondence: ; Tel.: +420-22044-4266
| |
Collapse
|