1
|
Epstein JA, Ramon GZ. In-situ measurement of the internal compaction of a soft material caused by permeation flow. J Colloid Interface Sci 2024; 673:883-892. [PMID: 38908287 DOI: 10.1016/j.jcis.2024.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
HYPOTHESIS The compaction of hydrogel films under permeation flow can be measured, in-situ, by tracking the internal displacements of their structure, thereby revealing the internal deformation profile. Additionally, monitoring the permeation flow rate and applied pressure over time enables determination of variations in the hydrogel's permeability due to flow-induced compaction. Hydrogels are soft porous materials capable of containing high amounts of water within their polymeric matrix. Flow-induced internal deformation can modify the hydrogel's permeability and selectivity, which are important attributes in separation processes, both industrial (e.g., membrane-based water purification) and natural (mucous filters in suspension feeders and intestinal lining) systems. Measuring the flow-induced compaction in thin hydrogels films can reveal the interplay between flow and permeability. However, the micro-scale internal compaction remains uncharted for due to experimental challenges. EXPERIMENTS A technique is demonstrated for analyzing the compaction and stratification of permeable soft materials, in-situ, created by a pressure-driven permeation flow. To this end, the internal deformations within a soft material layer are calculated, based on tracking the positions of fluorescent micro-tracers that are embedded within the soft material. We showcase the capabilities of this technique by examining a hundred-micron-thick calcium-alginate cake deposited on a nanofiltration membrane, emphasizing the achieved micro-scale resolution of the local compaction measurements. FINDINGS The results highlight the possibility to examine thin hydrogel films and their internal deformation produced by flow-induced stresses when varying the flow conditions. The method enables the simultaneous calculation of the soft material's permeance, as the pressure-driven flow conditions are continuously monitored. In summary, the proposed method provides a powerful tool for characterizing the behaviour of permeable soft materials under permeation conditions, with potential applications in engineering, biophysics and material science.
Collapse
Affiliation(s)
- José A Epstein
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Guy Z Ramon
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
2
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
3
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
5
|
Itzhak T, Segev-Mark N, Simon A, Abetz V, Ramon GZ, Segal-Peretz T. Atomic Layer Deposition for Gradient Surface Modification and Controlled Hydrophilization of Ultrafiltration Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15591-15600. [PMID: 33765379 DOI: 10.1021/acsami.0c23084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, atomic layer deposition (ALD) has emerged as a powerful technique for polymeric membrane surface modification. In this research, we study Al2O3 growth via ALD on two polymeric phase-inverted membranes: polyacrylonitrile (PAN) and polyetherimide (PEI). We demonstrate that Al2O3 can easily be grown on both membranes with as little as 10 ALD cycles. We investigate the formation of Al2O3 layer gradient through the depth of the membranes using high-resolution transmission electron microscopy and elemental analysis, showing that at short exposure times, Al2O3 accumulates at the top of the membrane, reducing pore size and creating a strong growth gradient, while at long exposure time, more homogeneous growth occurs. This detailed characterization creates the knowledge necessary for controlling the deposition gradient and achieving an efficient growth with minimum pore clogging. By tuning the Al2O3 exposure time and cycles, we demonstrate control over the Al2O3 depth gradient and membranes' pore size, hydrophilicity, and permeability. The oil antifouling performance of membranes is investigated using in situ confocal imaging during flow. This characterization technique reveals that Al2O3 surface modification reduces oil droplet surface coverage.
Collapse
Affiliation(s)
- Tamar Itzhak
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Naama Segev-Mark
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Simon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
- Institute of Physical Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Guy Z Ramon
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Segal-Peretz
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Hejase CA, Tarabara VV. Nanofiltration of saline oil-water emulsions: Combined and individual effects of salt concentration polarization and fouling by oil. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Elhady S, Bassyouni M, Mansour RA, Elzahar MH, Abdel-Hamid S, Elhenawy Y, Saleh MY. Oily Wastewater Treatment Using Polyamide Thin Film Composite Membrane Technology. MEMBRANES 2020; 10:membranes10050084. [PMID: 32354064 PMCID: PMC7281104 DOI: 10.3390/membranes10050084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
In this study, polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membrane filtration was used in edible oil wastewater emulsion treatment. The PA-TFC membrane was characterized using mechanical, thermal, chemical, and physical tests. Surface morphology and cross-sections of TFCs were characterized using SEM. The effects of edible oil concentrations, average droplets size, and contact angle on separation efficiency and flux were studied in detail. Purification performance was enhanced using activated carbon as a pre-treatment unit. The performance of the RO unit was assessed by chemical oxygen demand (COD) removal and permeate flux. Oil concentration in wastewater varied between 3000 mg/L and 6000 mg/L. Oily wastewater showed a higher contact angle (62.9°) than de-ionized water (33°). Experimental results showed that the presence of activated carbon increases the permeation COD removal from 94% to 99%. The RO membrane filtration coupled with an activated carbon unit of oily wastewater is a convenient hybrid technique for removal of high-concentration edible oil wastewater emulsion up to 99%. Using activated carbon as an adsorption pre-treatment unit improved the permeate flux from 34 L/m2hr to 75 L/m2hr.
Collapse
Affiliation(s)
- Sarah Elhady
- Public Works Department of Sanitary and Environmental Engineering, the High Institute of Engineering and Technology in New Damietta, New Damietta 34518, Egypt
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: ; Tel.: +2-011-596-75357
| | - Ramadan A. Mansour
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Damietta 34518, Egypt
| | - Medhat H. Elzahar
- Sanitary and Environmental Engineering, Faculty of Engineering, Port Said 42526, Egypt
- Department of Civil Engineering, Giza Engineering Institute, Elmoneeb, Giza 12511, Egypt
| | - Shereen Abdel-Hamid
- Department of Chemical Engineering, Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam city 3056, Egypt
| | - Yasser Elhenawy
- Department of Mechanical Engineering, Faculty of Engineering, Port Said University, Port Fouad 42526, Egypt
| | - Mamdou Y. Saleh
- Sanitary and Environmental Engineering, Faculty of Engineering, Port Said 42526, Egypt
- High Institute of Engineering and Technology, El-Manzala, Ad Daqahliyah 35642, Egypt
| |
Collapse
|