1
|
Idaszek J, Wysocki B, Ura-Bińczyk E, Dobkowska A, Nowak W, Yamamoto A, Sulka GD, Święszkowski W. Graded or random - Effect of pore distribution in 3D titanium scaffolds on corrosion performance and response of hMSCs. BIOMATERIALS ADVANCES 2024; 163:213955. [PMID: 38986318 DOI: 10.1016/j.bioadv.2024.213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Researchers agree that the ideal scaffold for tissue engineering should possess a 3D and highly porous structure, biocompatibility to encourage cell/tissue growth, suitable surface chemistry for cell attachment and differentiation, and mechanical properties that match those of the surrounding tissues. However, there is no consensus on the optimal pore distribution. In this study, we investigated the effect of pore distribution on corrosion resistance and performance of human mesenchymal stem cells (hMSC) using titanium scaffolds fabricated by laser beam powder bed fusion (PBF-LB). We designed two scaffold architectures with the same porosities (i.e., 75 %) but different distribution of pores of three sizes (200, 500, and 700 μm). The pores were either grouped in three zones (graded, GRAD) or distributed randomly (random, RAND). Microfocus X-ray computed tomography revealed that the chemically polished scaffolds had the porosity of 69 ± 4 % (GRAD) and 71 ± 4 % (RAND), and that the GRAD architecture had the higher surface area (1580 ± 101 vs 991 ± 62 mm2) and the thinner struts (221 ± 37 vs 286 ± 14 μm). The electrochemical measurements demonstrated that the apparent corrosion rate of chemically polished GRAD scaffold decreased with the immersion time extension, while that for polished RAND was increased. The RAND architecture outperformed the GRAD one with respect to hMSC proliferation (over two times higher although the GRAD scaffolds had 85 % higher initial cell retention) and migration from a monolayer. Our findings demonstrate that the pore distribution affects the biological properties of the titanium scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- J Idaszek
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - B Wysocki
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - E Ura-Bińczyk
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - A Dobkowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - W Nowak
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - A Yamamoto
- National Institute for Materials Science, Research Center for Macromolecules and Biomaterials, Tsukuba, Japan
| | - G D Sulka
- Jagiellonian University, Faculty of Chemistry, Department of Physical Chemistry and Electrochemistry, Gronostajowa 2, 30387 Krakow, Poland
| | - W Święszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
2
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
3
|
Rojas-Rojas L, Tozzi G, Guillén-Girón T. A Comprehensive Mechanical Characterization of Subject-Specific 3D Printed Scaffolds Mimicking Trabecular Bone Architecture Biomechanics. Life (Basel) 2023; 13:2141. [PMID: 38004281 PMCID: PMC10672154 DOI: 10.3390/life13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
This study presents a polymeric scaffold designed and manufactured to mimic the structure and mechanical compressive characteristics of trabecular bone. The morphological parameters and mechanical behavior of the scaffold were studied and compared with trabecular bone from bovine iliac crest. Its mechanical properties, such as modulus of elasticity and yield strength, were studied under a three-step monotonic compressive test. Results showed that the elastic modulus of the scaffold was 329 MPa, and the one for trabecular bone reached 336 MPa. A stepwise dynamic compressive test was used to assess the behavior of samples under various loading regimes. With microcomputed tomography (µCT), a three-dimensional reconstruction of the samples was obtained, and their porosity was estimated as 80% for the polymeric scaffold and 88% for trabecular bone. The full-field strain distribution of the samples was measured using in situ µCT mechanics and digital volume correlation (DVC). This provided information on the local microdeformation mechanism of the scaffolds when compared to that of the tissue. The comprehensive results illustrate the potential of the fabricated scaffolds as biomechanical templates for in vitro studies. Furthermore, there is potential for extending this structure and fabrication methodology to incorporate suitable biocompatible materials for both in vitro and in vivo clinical applications.
Collapse
Affiliation(s)
- Laura Rojas-Rojas
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham ME4 4TB, UK;
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| |
Collapse
|
4
|
Gatto ML, Cerqueni G, Groppo R, Tognoli E, Santoni A, Cabibbo M, Mattioli-Belmonte M, Mengucci P. On the Biomechanical Performances of Duplex Stainless Steel Graded Scaffolds Produced by Laser Powder Bed Fusion for Tissue Engineering Applications. J Funct Biomater 2023; 14:489. [PMID: 37888154 PMCID: PMC10607882 DOI: 10.3390/jfb14100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
This experimental study aims to extend the know-how on biomechanical performances of duplex stainless steel (DSS) for tissue engineering applications to a graded lattice geometry scaffold based on the F53 DSS (UNS S32750 according to ASTM A182) produced by laser powder bed fusion (LPBF). The same dense-out graded geometry based on rhombic dodecahedral elementary unit cells investigated in previous work on 316L stainless steel (SS) was adopted here for the manufacturing of the F53 DSS scaffold (SF53). Microstructural characterization and mechanical and biological tests were carried out on the SF53 scaffold, using the in vitro behavior of the 316L stainless steel scaffold (S316L) as a control. Results show that microstructure developed as a consequence of different volume energy density (VED) values is mainly responsible for the different mechanical behaviors of SF53 and S316L, both fabricated using the same LPBF manufacturing system. Specifically, the ultimate compressive strength (σUC) and elastic moduli (E) of SF53 are three times and seven times higher than S316L, respectively. Moreover, preliminary biological tests evidenced better cell viability in SF53 than in S316L already after seven days of culture, suggesting SF53 with dense-out graded geometry as a viable alternative to 316L SS for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Giorgia Cerqueni
- Department DISCLIMO & UdR INSTM, Marche Polytechnic University, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Riccardo Groppo
- 3D4MEC S.r.l., Via Porrettana 48, 40037 Sasso Marconi, Italy;
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy;
| | - Alberto Santoni
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Marcello Cabibbo
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Monica Mattioli-Belmonte
- Department DISCLIMO & UdR INSTM, Marche Polytechnic University, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
5
|
Giubilini A, Messori M, Bondioli F, Minetola P, Iuliano L, Nyström G, Maniura-Weber K, Rottmar M, Siqueira G. 3D-Printed Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-Cellulose-Based Scaffolds for Biomedical Applications. Biomacromolecules 2023; 24:3961-3971. [PMID: 37589321 PMCID: PMC10498448 DOI: 10.1021/acs.biomac.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Massimo Messori
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Federica Bondioli
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Paolo Minetola
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Luca Iuliano
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Gustav Nyström
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Markus Rottmar
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| |
Collapse
|
6
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Gatto ML, Cerqueni G, Groppo R, Santecchia E, Tognoli E, Defanti S, Mattioli-Belmonte M, Mengucci P. Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion. J Mech Behav Biomed Mater 2023; 144:105989. [PMID: 37369172 DOI: 10.1016/j.jmbbm.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Graded lattice scaffolds based on rhombic dodecahedral (RD) elementary unit cell geometry were manufactured in 316L stainless steel (SS) by laser powder bed fusion (LPBF). Two different strategies based on varying strut thickness layer-by-layer in the building direction were adopted to obtain the graded scaffolds: a) decreasing strut size from core to edge to produce the dense-in (DI) structure and b) increasing strut size in the same direction to produce the dense-out (DO) structure. Both graded structures (DI and DO) were constructed with specular symmetry with respect to the central horizontal axis. Structural, mechanical, and biological characterizations were carried out to evaluate feasibility of designing appropriate biomechanical performances of graded scaffolds in the perspective of bone tissue regeneration. Results showed that mechanical behavior is governed by graded geometry, while printing parameters influence structural properties of the material such as density, textures, and crystallographic phases. The predominant failure mechanism in graded structures initiates in correspondence of thinner struts, due to high stress concentrations on strut junctions. Biological tests evidenced better proliferation of cells in the DO graded scaffold, which in turn exhibits mechanical properties close to cortical bone. The combined control of grading strategy, printing parameters and elementary unit cell geometry can enable implementing scaffolds with improved biomechanical performances for bone tissue regeneration.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy.
| | - Giorgia Cerqueni
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, Ancona, 60126, Italy
| | - Riccardo Groppo
- 3D4MEC S.r.l, Via Porrettana 48, 40037, Sasso Marconi, BO, Italy
| | - Eleonora Santecchia
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - Emanuele Tognoli
- Department of Engineering "Enzo Ferrari", Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy
| | - Silvio Defanti
- Department of Engineering "Enzo Ferrari", Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy
| | - Monica Mattioli-Belmonte
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, Ancona, 60126, Italy
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| |
Collapse
|
8
|
Calazans Neto JV, Valente MLDC, Reis ACD. Effect of pores on cell adhesion to additively manufactured titanium implants: A systematic review. J Prosthet Dent 2023:S0022-3913(23)00340-2. [PMID: 37353409 DOI: 10.1016/j.prosdent.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
STATEMENT OF PROBLEM Titanium dental implants produced by additive manufacturing have pores that, depending on their size and quantity, may improve osteogenic cell adhesion without impairing mechanical properties. A systematic review of in vitro studies on this topic is lacking. PURPOSE The purpose of this systematic review was to answer the question "What is the influence of pores on osteogenic cell adhesion on titanium surfaces produced by additive manufacturing?". MATERIAL AND METHODS The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 standards and registered in the Open Science Framework (OSF) (osf.io/baw59). A manual search of published articles without language or time restrictions was conducted in November 2022 in the electronic databases PubMed, Scopus, ScienceDirect, Embase, and in the nonpeer-reviewed literature via Google Scholar. RESULTS A total of 1338 initial results were found, and after removing duplicates and applying eligibility criteria, 13 articles were included in this review that, according to the Joanna Briggs Institute (JBI) tool, presented a low risk of bias. Pores with larger diameters provide greater a surface area that favors cell filopodia adhesion and has interconnection that optimizes the transport of nutrients and oxygen and bone cell activity. CONCLUSIONS The presence of pores on the surface of titanium produced by additive manufacturing increases the adhesion, migration, proliferation, and viability of osteogenic cells.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Mariana Lima da Costa Valente
- Post-Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil.
| |
Collapse
|
9
|
Watanabe R, Takahashi H, Matsugaki A, Uemukai T, Kogai Y, Imagama T, Yukata K, Nakano T, Sakai T. Novel nano-hydroxyapatite coating of additively manufactured three-dimensional porous implants improves bone ingrowth and initial fixation. J Biomed Mater Res B Appl Biomater 2023; 111:453-462. [PMID: 36169186 PMCID: PMC10087424 DOI: 10.1002/jbm.b.35165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
Electron beam melting (EBM) has been used to fabricate three-dimensional (3D) porous Ti-6Al-4V surfaces for acetabular cups in total hip arthroplasty. However, there are radiographic concerns regarding poor implant fixation and bone ingrowth around electron beam melted (EBMed) 3D porous cups. We hypothesize that nano-hydroxyapatite (nHA) coating can promote bone ingrowth and thus decrease the occurrence of radiolucent lines around EBMed 3D porous cups. This study aimed to investigate the effect of a novel nHA coating on the biological performance of EBMed 3D porous implants in a beagle transcortical model. Low-porosity (control) and high-porosity 3D porous Ti-6Al-4V implants were manufactured using EBM. Half of the high-porosity implants were coated with nHA without clogging the 3D pores. Implants were inserted into the femoral diaphysis of the beagles. The beagles were euthanized at 4, 8, and 12 weeks postoperatively, and push-out testing was performed. Bone ingrowth was evaluated by histological analysis. Although the increase in porosity alone had no effect on biological behavior, the addition of nHA to high-porosity 3D implants significantly improved early bone fixation and bone ingrowth into the deep region of porous structures compared to low-porosity implants. This is the first report of a novel nHA coating that improved bone ingrowth into the deeper regions of 3D porous implants, which can prevent the occurrence of radiolucent lines around EBMed 3D porous cups.
Collapse
Affiliation(s)
- Ryota Watanabe
- R&D Center, Teijin Nakashima Medical Co., Ltd., Okayama, Okayama, Japan.,Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toru Uemukai
- R&D Center, SofSera Co. Ltd., Ibaraki, Osaka, Japan
| | | | - Takashi Imagama
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiminori Yukata
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
10
|
Zhu L, Wang X, Sun L, Hu Q, Li N. Optimisation of Selective Laser Melted Ti6Al4V Functionally Graded Lattice Structures Accounting for Structural Safety. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9072. [PMID: 36556878 PMCID: PMC9781265 DOI: 10.3390/ma15249072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This paper presents a new framework for lightweight optimisation of functionally graded lattice structures (FGLSs) with a particular focus on enhancing and guaranteeing structural safety through three main contributions. Firstly, a design strategy of adding fillets to the joints of body-centred cubic (BCC) type lattice cells was proposed to improve the effective yield stress of the lattices. Secondly, effective properties of lattice metamaterials were experimentally characterised by conducting quasi-static uniaxial compression tests on selective laser melted specimens of both Ti6Al4V BCC and filleted BCC (BCC-F) lattices with different relative densities. Thirdly, a yield stress constraint for optimising FGLSs was developed based on surrogate models quantifying the relationships between the relative density and the effective properties of BCC and BCC-F lattices developed using experimental results assisted by numerical homogenisation. This framework was tested with two case studies. Results showed that structural safety with respect to avoiding yield failure of the optimised FGLSs can be ensured and the introduction of fillets can effectively improve the strength-to-weight ratio of the optimised FGLSs composed of BCC type lattices. The BCC-F FGLS achieved 14.5% improvement in weight reduction compared with BCC FGLS for the Messerschmitt-Bölkow-Blohm beam optimisation case study.
Collapse
Affiliation(s)
- Lei Zhu
- Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK
| | - Xiaoyang Wang
- The First Aircraft Institute of AVIC, Xi’an 710087, China
| | - Liao Sun
- The First Aircraft Institute of AVIC, Xi’an 710087, China
| | - Quandong Hu
- Manufacturing Technology Institute (MTI) of AVIC, Beijing 100024, China
| | - Nan Li
- Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
12
|
Rouf S, Malik A, Raina A, Irfan Ul Haq M, Naveed N, Zolfagharian A, Bodaghi M. Functionally graded additive manufacturing for orthopedic applications. J Orthop 2022; 33:70-80. [PMID: 35874041 PMCID: PMC9304666 DOI: 10.1016/j.jor.2022.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background Additive Manufacturing due to its benefits in developing parts with complex geometries and shapes, has evolved as an alternate manufacturing process to develop implants with desired properties. The structure of human bones being anisotropic in nature is biologically functionally graded i,e. The structure possesses different properties in different directions. Therefore, various orthopedic implants such as knee, hip and other bone plates, if functionally graded can perform better. In this context, the development of functionally graded (FG) parts for orthopedic application with tailored anisotropic properties has become easier through the use of additive manufacturing (AM). Objectives and Rationale: The current paper aims to study the various aspects of additively manufactured FG parts for orthopedic applications. It presents the details of various orthopedic implants such as knee, hip and other bone plates in a structured manner. A systematic literature review is conducted to study the various material and functional aspects of functionally graded parts for orthopedic applications. A section is also dedicated to discuss the mechanical properties of functionally graded parts. Conclusion The literature revealed that additive manufacturing can provide lot of opportunities for development of functionally graded orthopedic implants with improved properties and durability. Further, the effect of various FG parameters on the mechanical behavior of these implants needs to be studied in detail. Also, with the advent of various AM technologies, the functional grading can be achieved by various means e.g. density, porosity, microstructure, composition, etc. By varying the AM parameters. However, the current limitations of cost and material biocompatibility prevent the widespread exploitation of AM technologies for various orthopedic applications.
Collapse
Affiliation(s)
- Saquib Rouf
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Abrar Malik
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Nida Naveed
- Faculty of Technology, University of Sunderland, UK
| | | | - Mahdi Bodaghi
- School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
13
|
3D Printed Biomimetic Metamaterials with Graded Porosity and Tapering Topology for Improved Cell Seeding and Bone Regeneration. Bioact Mater 2022; 25:677-688. [PMID: 37056269 PMCID: PMC10087492 DOI: 10.1016/j.bioactmat.2022.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Biomimetic metallic biomaterials prepared for bone scaffolds have drawn more and more attention in recent years. However, the topological design of scaffolds is critical to cater to multi-physical requirements for efficient cell seeding and bone regeneration, yet remains a big scientific challenge owing to the coupling of mechanical and mass-transport properties in conventional scaffolds that lead to poor control towards favorable modulus and permeability combinations. Herein, inspired by the microstructure of natural sea urchin spines, biomimetic scaffolds constructed by pentamode metamaterials (PMs) with hierarchical structural tunability were additively manufactured via selective laser melting. The mechanical and mass-transport properties of scaffolds could be simultaneously tuned by the graded porosity (B/T ratio) and the tapering level (D/d ratio). Compared with traditional metallic biomaterials, our biomimetic PM scaffolds possess graded pore distribution, suitable strength, and significant improvements to cell seeding efficiency, permeability, and impact-tolerant capacity, and they also promote in vivo osteogenesis, indicating promising application for cell proliferation and bone regeneration using a structural innovation.
Collapse
|
14
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
15
|
Lv Y, Liu G, Wang B, Tang Y, Lin Z, Liu J, Wei G, Wang L. Pore Strategy Design of a Novel NiTi-Nb Biomedical Porous Scaffold Based on a Triply Periodic Minimal Surface. Front Bioeng Biotechnol 2022; 10:910475. [PMID: 35757802 PMCID: PMC9214207 DOI: 10.3389/fbioe.2022.910475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The pore strategy is one of the important factors affecting the biomedical porous scaffold at the same porosity. In this work, porous scaffolds were designed based on the triply periodic minimal surface (TPMS) structure under the same porosity and different pore strategies (pore size and size continuous gradient distribution) and were successfully prepared using a novel Ni46.5Ti44.5Nb9 alloy and selective laser melting (SLM) technology. After that, the effects of the pore strategies on the microstructure, mechanical properties, and permeability of porous scaffolds were systematically investigated. The results showed that the Ni46.5Ti44.5Nb9 scaffolds have a low elastic modulus (0.80–1.05 GPa) and a high ductility (15.3–19.1%) compared with previous works. The pore size has little effect on their mechanical properties, but increasing the pore size significantly improves the permeability due to the decrease in specific surfaces. The continuous gradient distribution of the pore size changes the material distribution of the scaffold, and the smaller porosity structure has a better load-bearing capacity and contributes primarily to the high compression strength. The local high porosity structure bears more fluid flow, which can improve the permeability of the overall scaffold. This work can provide theoretical guidance for the design of porous scaffolds.
Collapse
Affiliation(s)
- Yuting Lv
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China.,State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Guohao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Binghao Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhengjie Lin
- 3D Printing Clinical Translational and Regenerative Medicine Center, Shenzhen Shekou People's Hospital, Shenzhen, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guijiang Wei
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.,Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. MATERIALS 2022; 15:ma15093095. [PMID: 35591430 PMCID: PMC9104841 DOI: 10.3390/ma15093095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
This work aimed to study one of the most important challenges in orthopaedic implantations, known as stress shielding of total shoulder implants. This problem arises from the elastic modulus mismatch between the implant and the surrounding tissue, and can result in bone resorption and implant loosening. This objective was addressed by designing and optimising a cellular-based lattice-structured implant to control the stiffness of a humeral implant stem used in shoulder implant applications. This study used a topology lattice-optimisation tool to create different cellular designs that filled the original design of a shoulder implant, and were further analysed using finite element analysis (FEA). A laser powder bed fusion technique was used to fabricate the Ti-6Al-4V test samples, and the obtained material properties were fed to the FEA model. The optimised cellular design was further fabricated using powder bed fusion, and a compression test was carried out to validate the FEA model. The yield strength, elastic modulus, and surface area/volume ratio of the optimised lattice structure, with a strut diameter of 1 mm, length of 5 mm, and 100% lattice percentage in the design space of the implant model were found to be 200 MPa, 5 GPa, and 3.71 mm−1, respectively. The obtained properties indicated that the proposed cellular structure can be effectively applied in total shoulder-replacement surgeries. Ultimately, this approach should lead to improvements in patient mobility, as well as to reducing the need for revision surgeries due to implant loosening.
Collapse
|
17
|
Abstract
Ti-6Al-4V (Ti64) alloy is one of the most widely used orthopedic implant materials due to its mechanical properties, corrosion resistance, and biocompatibility nature. Porous Ti64 structures are gaining more research interest as bone implants as they can help in reducing the stress-shielding effect when compared to their solid counterpart. The literature shows that porous Ti64 implants fabricated using different additive manufacturing (AM) process routes, such as laser powder bed fusion (L-PBF) and electron beam melting (EBM) can be tailored to mimic the mechanical properties of natural bone. This review paper categorizes porous implant designs into non-gradient (uniform) and gradient (non-uniform) porous structures. Gradient porous design appears to be more promising for orthopedic applications due to its closeness towards natural bone morphology and improved mechanical properties. In addition, this paper outlines the details on bone structure and its properties, mechanical properties, fatigue behavior, multifunctional porous implant designs, current challenges, and literature gaps in the research studies on porous Ti64 bone implants.
Collapse
|
18
|
Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of Mechanical Properties and Permeability of Trabecular-Like Porous Scaffold by Additive Manufacturing. Front Bioeng Biotechnol 2022; 9:779854. [PMID: 34993188 PMCID: PMC8724551 DOI: 10.3389/fbioe.2021.779854] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Human bone cells live in a complex environment, and the biomimetic design of porous structures attached to implants is in high demand. Porous structures based on Voronoi tessellation with biomimetic potential are gradually used in bone repair scaffolds. In this study, the mechanical properties and permeability of trabecular-like porous scaffolds with different porosity levels and average apertures were analyzed. The mechanical properties of bone-implant scaffolds were evaluated using finite element analysis and a mechanical compression experiment, and the permeability was studied by computational fluid dynamics. Finally, the attachment of cells was observed by confocal fluorescence microscope. The results show that the performance of porous structures can be controlled by the initial design of the microstructure and tissue morphology. A good structural design can accurately match the performance of the natural bone. The study of mechanical properties and permeability of the porous structure can help address several problems, including stress shielding and bone ingrowth in existing biomimetic bone structures, and will also promotes cell adhesion, migration, and eventual new bone attachment.
Collapse
Affiliation(s)
- Long Chao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Jiao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huixin Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| | - Deqiao Xie
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhidong Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
19
|
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022; 128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
20
|
Davoodi E, Montazerian H, Esmaeilizadeh R, Darabi AC, Rashidi A, Kadkhodapour J, Jahed H, Hoorfar M, Milani AS, Weiss PS, Khademhosseini A, Toyserkani E. Additively Manufactured Gradient Porous Ti-6Al-4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22110-22123. [PMID: 33945249 DOI: 10.1021/acsami.0c20751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Laser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated. High local porosity is defined at the implant/tissue interface aiming to improve the biological response. Gradually decreasing porosity from the surface to the center of the porous constructs provides mechanical strength in selective laser melted Ti-6Al-4V implants. The effect of unit cell size is studied to discover the printability limit where the specific surface area is maximized. Furthermore, mechanical studies on the unit cell topology effects suggest that the bending-dominated architectures can provide significantly enhanced strength and deformability, compared to stretching-dominated architectures. A finite element (FE) model developed also showed great predictability (within ∼13%) of the mechanical responses of implants to physical activities. Finally, in vitro biocompatibility studies were conducted for two-dimensional (2D) and three-dimensional (3D) cases. The results of the 2D in conjunction with surface roughness show favored physical cell attachment on the implant surface. Also, the results of the 3D biocompatibility study for the scaffolds incorporated with a cell-laden gelatin methacryloyl (GelMA) hydrogel show excellent viability. The design procedure proposed here provides new insights into the development of porous hip implants with simultaneous high mechanical and biological responses.
Collapse
Affiliation(s)
- Elham Davoodi
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Reza Esmaeilizadeh
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Ch Darabi
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Armin Rashidi
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Javad Kadkhodapour
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Hamid Jahed
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Kolken H, Garcia AF, Du Plessis A, Rans C, Mirzaali M, Zadpoor A. Fatigue performance of auxetic meta-biomaterials. Acta Biomater 2021; 126:511-523. [PMID: 33711528 DOI: 10.1016/j.actbio.2021.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023]
Abstract
Meta-biomaterials offer a promising route towards the development of life-lasting implants. The concept aims to achieve solutions that are ordinarily impossible, by offering a unique combination of mechanical, mass transport, and biological properties through the optimization of their small-scale geometrical and topological designs. In this study, we primarily focus on auxetic meta-biomaterials that have the extraordinary ability to expand in response to axial tension. This could potentially improve the longstanding problem of implant loosening, if their performance can be guaranteed in cyclically loaded conditions. The high-cycle fatigue performance of additively manufactured (AM) auxetic meta-biomaterials made from commercially pure titanium (CP-Ti) was therefore studied. Small variations in the geometry of the re-entrant hexagonal honeycomb unit cell and its relative density resulted in twelve different designs (relative density: ~5-45%, re-entrant angle = 10-25°, Poisson's ratio = -0.076 to -0.504). Micro-computed tomography, scanning electron microscopy and mechanical testing were used to respectively measure the morphological and quasi-static properties of the specimens before proceeding with compression-compression fatigue testing. These auxetic meta-biomaterials exhibited morphological and mechanical properties that are deemed appropriate for bone implant applications (elastic modulus = 66.3-5648 MPa, yield strength = 1.4-46.7 MPa, pore size = 1.3-2.7 mm). With an average maximum stress level of 0.47 σy at 106 cycles (range: 0.35 σyσy- 0.82 σyσy), the auxetic structures characterized here are superior to many other non-auxetic meta-biomaterials made from the same material. The optimization of the printing process and the potential application of post-processing treatments could improve their performance in cyclically loaded settings even further. STATEMENT OF SIGNIFICANCE: Auxetic meta-biomaterials have a negative Poisson's ratio and, therefore, expand laterally in response to axial tension. Recently, they have been found to restore bone-implant contact along the lateral side of a hip stem. As a result, the bone will be compressed along both of the implant's contact lines, thereby actively reducing the risk of implant failure. In this case the material will be subjected to cyclic loading, for which no experimental data has been reported yet. Here, we present the first ever study of the fatigue performance of additively manufactured auxetic meta-biomaterials based on the re-entrant hexagonal honeycomb. These results will advance the adoption of auxetic meta-biomaterials in load-bearing applications, such as the hip stem, to potentially improve implant longevity.
Collapse
|
22
|
Khimich MA, Prosolov KA, Mishurova T, Evsevleev S, Monforte X, Teuschl AH, Slezak P, Ibragimov EA, Saprykin AA, Kovalevskaya ZG, Dmitriev AI, Bruno G, Sharkeev YP. Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1159. [PMID: 33946726 PMCID: PMC8145374 DOI: 10.3390/nano11051159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies.
Collapse
Affiliation(s)
- Margarita A. Khimich
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Physics Technical Faculty, Tomsk Material Science Common Use Center, National Research Tomsk State University, 36, Lenina pr., 634050 Tomsk, Russia
| | - Konstantin A. Prosolov
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Tatiana Mishurova
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Sergei Evsevleev
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Xavier Monforte
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Andreas H. Teuschl
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria;
| | - Egor A. Ibragimov
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Alexander A. Saprykin
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Zhanna G. Kovalevskaya
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Andrey I. Dmitriev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Giovanni Bruno
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yurii P. Sharkeev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| |
Collapse
|
23
|
Lv Y, Wang B, Liu G, Tang Y, Lu E, Xie K, Lan C, Liu J, Qin Z, Wang L. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review. Front Bioeng Biotechnol 2021; 9:641130. [PMID: 33842445 PMCID: PMC8033174 DOI: 10.3389/fbioe.2021.641130] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
Design an implant similar to the human bone is one of the critical problems in bone tissue engineering. Metal porous scaffolds have good prospects in bone tissue replacement due to their matching elastic modulus, better strength, and biocompatibility. However, traditional processing methods are challenging to fabricate scaffolds with a porous structure, limiting the development of porous scaffolds. With the advancement of additive manufacturing (AM) and computer-aided technologies, the development of porous metal scaffolds also ushers in unprecedented opportunities. In recent years, many new metal materials and innovative design methods are used to fabricate porous scaffolds with excellent mechanical properties and biocompatibility. This article reviews the research progress of porous metal scaffolds, and introduces the AM technologies used in porous metal scaffolds. Then the applications of different metal materials in bone scaffolds are summarized, and the advantages and limitations of various scaffold design methods are discussed. Finally, we look forward to the development prospects of AM in porous metal scaffolds.
Collapse
Affiliation(s)
- Yuting Lv
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China.,State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Binghao Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Guohao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Eryi Lu
- Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kegong Xie
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changgong Lan
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenbo Qin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Shi H, Zhou P, Li J, Liu C, Wang L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front Bioeng Biotechnol 2021; 8:616845. [PMID: 33553121 PMCID: PMC7863761 DOI: 10.3389/fbioe.2020.616845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings.
Collapse
Affiliation(s)
- Hongyuan Shi
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Jie Li
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Dziaduszewska M, Zieliński A. Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:712. [PMID: 33546358 PMCID: PMC7913507 DOI: 10.3390/ma14040712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
One of the biggest challenges in tissue engineering is the manufacturing of porous structures that are customized in size and shape and that mimic natural bone structure. Additive manufacturing is known as a sufficient method to produce 3D porous structures used as bone substitutes in large segmental bone defects. The literature indicates that the mechanical and biological properties of scaffolds highly depend on geometrical features of structure (pore size, pore shape, porosity), surface morphology, and chemistry. The objective of this review is to present the latest advances and trends in the development of titanium scaffolds concerning the relationships between applied materials, manufacturing methods, and interior architecture determined by porosity, pore shape, and size, and the mechanical, biological, chemical, and physical properties. Such a review is assumed to show the real achievements and, on the other side, shortages in so far research.
Collapse
Affiliation(s)
- Magda Dziaduszewska
- Biomaterials Technology Division, Institute of Machines Technology and Materials, Faculty of Mechanical Engineering and Ship Building, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | | |
Collapse
|
26
|
Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng 2021; 15:4. [PMID: 33478505 PMCID: PMC7818551 DOI: 10.1186/s13036-021-00255-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The microstructure of porous scaffolds plays a vital role in bone regeneration, but its optimal shape is still unclear. In this study, four kinds of porous titanium alloy scaffolds with similar porosities (65%) and pore sizes (650 μm) and different structures were prepared by selective laser melting. Four scaffolds were implanted into the distal femur of rabbits to evaluate bone tissue growth in vivo. Micro-CT and hard tissue section analyses were performed 6 and 12 weeks after the operation to reveal the bone growth of the porous scaffold. The results show that diamond lattice unit (DIA) bone growth is the best of the four topological scaffolds. Through computational fluid dynamics (CFD) analysis, the permeability, velocity and flow trajectory inside the scaffold structure were calculated. The internal fluid velocity difference of the DIA structure is the smallest, and the trajectory of fluid flow inside the scaffold is the longest, which is beneficial for blood vessel growth, nutrient transport and bone formation. In this study, the mechanism of bone growth in different structures was revealed by in vivo experiments combined with CFD, providing a new theoretical basis for the design of bone scaffolds in the future.
Collapse
Affiliation(s)
- Fuyuan Deng
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Linlin Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhong Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| | - Juncai Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
27
|
Li Y, Pavanram P, Zhou J, Lietaert K, Bobbert FSL, Kubo Y, Leeflang MA, Jahr H, Zadpoor AA. Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci 2021; 8:2404-2419. [PMID: 31993592 DOI: 10.1039/c9bm01904a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Topological design provides additively manufactured (AM) biodegradable porous metallic biomaterials with a unique opportunity to adjust their biodegradation behavior and mechanical properties, thereby satisfying the requirements for ideal bone substitutes. However, no information is available yet concerning the effect of topological design on the performance of AM porous zinc (Zn) that outperforms Mg and Fe in biodegradation behavior. Here, we studied one functionally graded and two uniform AM porous Zn designs with diamond unit cell. Cylindrical specimens were fabricated from pure Zn powder by using a powder bed fusion technique, followed by a comprehensive study on their static and dynamic biodegradation behaviors, mechanical properties, permeability, and biocompatibility. Topological design, indeed, affected the biodegradation behavior of the specimens, as evidenced by 150% variations in biodegradation rate between the three different designs. After in vitro dynamic immersion for 28 days, the AM porous Zn had weight losses of 7-12%, relying on the topological design. The degradation rates satisfied the desired biodegradation time of 1-2 years for bone substitution. The mechanical properties of the biodegraded specimens of all the groups maintained within the range of those of cancellous bone. As opposed to the trends observed for other biodegradable porous metals, after 28 days of in vitro biodegradation, the yield strengths of the specimens of all the groups (σy = 7-14 MPa) increased consistently, as compared to those of the as-built specimens (σy = 4-11 MPa). Moreover, AM porous Zn showed excellent biocompatibility, given that the cellular activities in none of the groups differed from the Ti controls for up to 72 h. Using topological design of AM porous Zn for controlling its mechanical properties and degradation behavior is thus clearly promising, thereby rendering flexibility to the material to meet a variety of clinical requirements.
Collapse
Affiliation(s)
- Y Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - P Pavanram
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - K Lietaert
- 3D Systems - LayerWise NV, Grauwmeer 14, Leuven 3001, Belgium and Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - F S L Bobbert
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - H Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany and Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| |
Collapse
|
28
|
Vilardell AM, Takezawa A, du Plessis A, Takata N, Krakhmalev P, Kobashi M, Albu M, Kothleitner G, Yadroitsava I, Yadroitsev I. Mechanical behavior of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu lattice structures manufactured by laser powder bed fusion and designed for implant applications. J Mech Behav Biomed Mater 2020; 113:104130. [PMID: 33049622 DOI: 10.1016/j.jmbbm.2020.104130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
In the present study, cellular lattice structures for implant applications are reported for the first-time incorporating copper directly by in-situ alloying in the laser powder bed fusion process. The aim to incorporate 3 at.% Cu into Ti6Al4V(ELI) is selected for improved antibacterial properties while maintaining appropriate mechanical properties. Previously, topologically optimized Ti6Al4V(ELI) lattice structures were successfully designed, manufactured and studied for implant applications. The development of a new alloy produced by in-situ alloying of elemental powder mixture of Ti6Al4V(ELI) and pure Cu powders was used here for the production of identical lattice structures with improved antibacterial properties. One of the same as-designed CAD models was used for the manufacturing of these lattices compared to previous work on pure Ti6Al4V(ELI) lattices, making direct comparison of mechanical properties possible. Similar manufacturability highlights the applicability of this alloying technique to other lattice designs. Microstructural characterization was performed by optical and electron microscopies, as well as microCT. Mechanical characterization was performed by means of compression tests and hardness measurements. Results showed that in-situ alloying with copper leads to the formation of localized Cu-rich regions, refinement of martensitic phase and the formation of CuTi2 intermetallic precipitates, which increased the hardness and strength of the material. Deviations in wall thickness between the as-designed and as-manufactured lattices led to anisotropy of the mechanical properties of the lattices. Higher compressive strength values were obtained when thicker walls were oriented along the loading direction. Nevertheless, alloying with Cu had a higher impact on the compressive strength of lattice structure than the wall thickness deviations. The direct in-situ alloying of copper in Ti6Al4V(ELI) is a promising route for direct manufacturing of antibacterial implants.
Collapse
Affiliation(s)
- A M Vilardell
- Karlstad University, Department of Engineering and Physics, Karlstad, SE-651 88, Sweden.
| | - A Takezawa
- Dept. of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 59-311, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - A du Plessis
- Research Group 3D Innovation, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - N Takata
- Dept. of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - P Krakhmalev
- Karlstad University, Department of Engineering and Physics, Karlstad, SE-651 88, Sweden
| | - M Kobashi
- Dept. of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - M Albu
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17-3, A-8010, Graz, Austria
| | - G Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17-3, A-8010, Graz, Austria
| | - I Yadroitsava
- Dept. of Mechanical and Mechatronics Engineering, Central University of Technology, Bloemfontein, 9300, South Africa
| | - I Yadroitsev
- Dept. of Mechanical and Mechatronics Engineering, Central University of Technology, Bloemfontein, 9300, South Africa
| |
Collapse
|
29
|
Formation of Free-Standing Inverse Opals with Gradient Pores. NANOMATERIALS 2020; 10:nano10101923. [PMID: 32993122 PMCID: PMC7600223 DOI: 10.3390/nano10101923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/20/2023]
Abstract
We demonstrate the fabrication of free-standing inverse opals with gradient pores via a combination of electrophoresis and electroplating techniques. Our processing scheme starts with the preparation of multilayer colloidal crystals by conducting sequential electrophoresis with polystyrene (PS) microspheres in different sizes (300, 600, and 1000 nm). The critical factors affecting the stacking of individual colloidal crystals are discussed and relevant electrophoresis parameters are identified so the larger PS microspheres are assembled successively atop of smaller ones in an orderly manner. In total, we construct multilayer colloidal crystals with vertical stacking of microspheres in 300/600, 300/1000, and 300/600/1000 nm sequences. The inverse opals with gradient pores are produced by galvanostatic plating of Ni, followed by the selective removal of colloidal template. Images from scanning electron microscopy exhibit ideal multilayer close-packed structures with well-defined boundaries among different layers. Results from porometer analysis reveal the size of bottlenecks consistent with those of interconnected pore channels from inverse opals of smallest PS microspheres. Mechanical properties determined by nanoindentation tests indicate significant improvements for multilayer inverse opals as compared to those of conventional single-layer inverse opals.
Collapse
|
30
|
Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol 2020; 8:609. [PMID: 32626698 PMCID: PMC7311579 DOI: 10.3389/fbioe.2020.00609] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
With the increasing application of orthopedic scaffolds, a dramatically increasing number of requirements for scaffolds are precise. The porous structure has been a fundamental design in the bone tissue engineering or orthopedic clinics because of its low Young's modulus, high compressive strength, and abundant cell accommodation space. The porous structure manufactured by additive manufacturing (AM) technology has controllable pore size, pore shape, and porosity. The single unit can be designed and arrayed with AM, which brings controllable pore characteristics and mechanical properties. This paper presents the current status of porous designs in AM technology. The porous structures are stated from the cellular structure and the whole structure. In the aspect of the cellular structure, non-parametric design and parametric design are discussed here according to whether the algorithm generates the structure or not. The non-parametric design comprises the diamond, the body-centered cubic, and the polyhedral structure, etc. The Voronoi, the Triply Periodic Minimal Surface, and other parametric designs are mainly discussed in parametric design. In the discussion of cellular structures, we emphasize the design, and the resulting biomechanical and biological effects caused by designs. In the aspect of the whole structure, the recent experimental researches are reviewed on uniform design, layered gradient design, and layered gradient design based on topological optimization, etc. These parts are summarized because of the development of technology and the demand for mechanics or bone growth. Finally, the challenges faced by the porous designs and prospects of porous structure in orthopedics are proposed in this paper.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Li Y, Jahr H, Pavanram P, Bobbert FSL, Paggi U, Zhang XY, Pouran B, Leeflang MA, Weinans H, Zhou J, Zadpoor AA. Additively manufactured functionally graded biodegradable porous iron. Acta Biomater 2019; 96:646-661. [PMID: 31302295 DOI: 10.1016/j.actbio.2019.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/28/2022]
Abstract
Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first ever report on AM functionally graded biodegradable porous metallic biomaterials. We made use of a diamond unit cell for the topological design of four different types of porous structures including two functionally graded structures and two reference uniform structures. Specimens were then fabricated from pure iron powder using selective laser melting (SLM), followed by experimental and computational analyses of their permeability, dynamic biodegradation behavior, mechanical properties, and cytocompatibility. It was found that the topological design with functional gradients controlled the fluid flow, mass transport properties and biodegradation behavior of the AM porous iron specimens, as up to 4-fold variations in permeability and up to 3-fold variations in biodegradation rate were observed for the different experimental groups. After 4 weeks of in vitro biodegradation, the AM porous scaffolds lost 5-16% of their weight. This falls into the desired range of biodegradation rates for bone substitution and confirms our hypothesis that topological design could indeed accelerate the biodegradation of otherwise slowly degrading metals, like iron. Even after 4 weeks of biodegradation, the mechanical properties of the specimens (i.e., E = 0.5-2.1 GPa, σy = 8-48 MPa) remained within the range of the values reported for trabecular bone. Design-dependent cell viability did not differ from gold standard controls for up to 48 h. This study clearly shows the great potential of AM functionally graded porous iron as a bone substituting material. Moreover, we demonstrate that complex topological design permits the control of mechanical properties, degradation behavior of AM porous metallic biomaterials. STATEMENT OF SIGNIFICANCE: No functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first report on 3D-printed functionally graded biodegradable porous metallic biomaterials. Our results suggest that topological design in general, and functional gradients in particular can be used as an important tool for adjusting the biodegradation behavior of AM porous metallic biomaterials. The biodegradation rate and mass transport properties of AM porous iron can be increased while maintaining the bone-mimicking mechanical properties of these biomaterials. The observations reported here underline the importance of proper topological design in the development of AM porous biodegradable metals.
Collapse
Affiliation(s)
- Y Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - H Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, The Netherlands
| | - P Pavanram
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - F S L Bobbert
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - U Paggi
- 3D Systems - LayerWise NV, Grauwmeer 14, Leuven 3001, Belgium; KU Leuven Department of Mechanical Engineering, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - X-Y Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 10004, China
| | - B Pouran
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - H Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| |
Collapse
|
32
|
Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. METALS 2019. [DOI: 10.3390/met9091004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metals have been used for orthopedic implants for a long time due to their excellent mechanical properties. With the rapid development of additive manufacturing (AM) technology, studying customized implants with complex microstructures for patients has become a trend of various bone defect repair. A superior customized implant should have good biocompatibility and mechanical properties matching the defect bone. To meet the performance requirements of implants, this paper introduces the biomedical metallic materials currently applied to orthopedic implants from the design to manufacture, elaborates the structure design and surface modification of the orthopedic implant. By selecting the appropriate implant material and processing method, optimizing the implant structure and modifying the surface can ensure the performance requirements of the implant. Finally, this paper discusses the future development trend of the orthopedic implant.
Collapse
|
33
|
Mahmoud D, Elbestawi MA, Yu B. Process–Structure–Property Relationships in Selective Laser Melting of Porosity Graded Gyroids. J Med Device 2019. [DOI: 10.1115/1.4043736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Selective laser melting (SLM) can be used to tailor both the geometry and mechanical properties of lattice structures to match bone properties. In this work, a process–structure–property (PSP) relationship for Ti6AL4V porosity graded gyroids (PGGs) structures was developed. A design of experiment approach was used to test the significance and contribution of different process parameters on microstructure, morphology, and mechanical properties. Process maps to predict the morphology errors at specific laser power and scan speed were developed. Moreover, the mechanical properties of radially PGGs with a relative density of 25% are evaluated using different SLM process parameters. The results showed that PGGs with different radial gradation designs have mechanical properties that are compatible with bone implants: apparent compressive modulus of 1.4–5.3 GPa and compressive strength 40–154 MPa.
Collapse
Affiliation(s)
- Dalia Mahmoud
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada e-mail:
| | - M. A. Elbestawi
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada e-mail:
| | - Bosco Yu
- Department of Material Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada e-mail:
| |
Collapse
|
34
|
Soro N, Attar H, Brodie E, Veidt M, Molotnikov A, Dargusch MS. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications. J Mech Behav Biomed Mater 2019; 97:149-158. [PMID: 31121433 DOI: 10.1016/j.jmbbm.2019.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Integrating porous networks in load-bearing implants is essential in order to improve mechanical compatibility with the host tissue. Additive manufacturing has enabled the optimisation of the mechanical properties of metallic biomaterials, notably with the use of novel periodic regular geometries as porous structures. In this work, we successfully produced solid and lattice structures made of Ti-25Ta alloy with selective laser melting (SLM) using a Schwartz primitive unit-cell for the first time. The manufacturability and repeatability of the process was assessed through macrostructural and microstructural observations along with compressive testing. The mechanical properties are found to be suitable for bone replacement applications, showing significantly reduced elastic moduli, ranging from 14 to 36 GPa depending on the level of porosity. Compared to the conventionally used biomedical Ti-6Al-4V alloy, the Ti-Ta alloy offers superior mechanical compatibility for the targeted applications with lower elastic modulus, similar strength and higher ductility, making the Ti-25Ta alloy a promising candidate for a new generation of load-bearing implants.
Collapse
Affiliation(s)
- Nicolas Soro
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hooyar Attar
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Erin Brodie
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Martin Veidt
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Matthew S Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
35
|
Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater 2019; 85:41-59. [PMID: 30590181 DOI: 10.1016/j.actbio.2018.12.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Additive manufacturing (AM) (=3D printing) and rational design techniques have enabled development of meta-biomaterials with unprecedented combinations of mechanical, mass transport, and biological properties. Such meta-biomaterials are usually topologically ordered and are designed by repeating a number of regular unit cells in different directions to create a lattice structure. Establishing accurate topology-property relationships is of critical importance for these materials. In this paper, we specifically focus on AM metallic meta-biomaterials aimed for application as bone substitutes and orthopaedic implants and review the currently available evidence regarding their mechanical performance under quasi-static and cyclic loading conditions. The topology-property relationships are reviewed for regular beam-based lattice structures, sheet-based lattice structures including those based on triply periodic minimal surface, and graded designs. The predictive models used for establishing the topology-property relationships including analytical and computational models are covered as well. Moreover, we present an overview of the effects of the AM processes, material type, tissue regeneration, biodegradation, surface bio-functionalization, post-manufacturing (heat) treatments, and loading profiles on the quasi-static mechanical properties and fatigue behavior of AM meta-biomaterials. AM meta-biomaterials exhibiting unusual mechanical properties such as negative Poisson's ratios (auxetic meta-biomaterials), shape memory behavior, and superelasitcity as well as the potential applications of such unusual behaviors (e.g. deployable implants) are presented too. The paper concludes with some suggestions for future research. STATEMENT OF SIGNIFICANCE: Additive manufacturing enables fabrication of meta-biomaterials with rare combinations of topological, mechanical, and mass transport properties. Given that the micro-scale topological design determines the macro-scale properties of meta-biomaterials, establishing topology-property relationships is the central research question when rationally designing meta-biomaterials. The interest in understanding the relationship between the topological design and material type on the one hand and the mechanical properties and fatigue behavior of meta-biomaterials on the other hand is currently booming. This paper presents and critically evaluates the most important trends and findings in this area with a special focus on the metallic biomaterials used for skeletal applications to enable researchers better understand the current state-of-the-art and to guide the design of future research projects.
Collapse
|
36
|
A Comprehensive Study of Steel Powders (316L, H13, P20 and 18Ni300) for Their Selective Laser Melting Additive Manufacturing. METALS 2019. [DOI: 10.3390/met9010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The determination of microstructural details for powder materials is vital for facilitating their selective laser melting (SLM) process. Four widely used steels (316L, H13, P20 and 18Ni300) have been investigated to detail their powders’ microstructures as well as laser absorptivity to understand their SLM processing from raw material perspective. Phase components of these four steel powders were characterized by X-ray diffraction (XRD), synchrotron radiation X-ray diffraction (SR-XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were utilized to reveal the surface structure of these four steel powders. It is found that phase components of H13, P20 and 18Ni300 are mainly composed of martensite and a small amount of austenite due to the high cooling rate during gas atomization processing, while 316L is characterized by austenite. XPS results show that the four steel powders all possess a layered surface structure, consisting of a thin iron oxide layer at the outmost surface and metal matrix at the inner surface. It is found that the presence of such oxide layer can improve the absorptivity of steel powders and is beneficial for their SLM process.
Collapse
|
37
|
Zhang XY, Fang G, Leeflang S, Zadpoor AA, Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater 2019; 84:437-452. [PMID: 30537537 DOI: 10.1016/j.actbio.2018.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
Recent advances in additive manufacturing (AM) have enabled the fabrication of functionally graded porous biomaterials (FGPBs) for application as orthopedic implants and bone substitutes. Here, we present a step-wise topological design of FGPB based on diamond unit cells to mimic the structure of the femoral diaphysis. The FGPB was manufactured from Ti-6Al-4V powder using the selective laser melting (SLM) technique. The morphological parameters, permeability and mechanical properties of FGPB samples were measured and compared with those of the biomaterials with uniform porous structures based on the same type of the unit cell. The FGPB exhibited a low density (1.9 g/cm3), a moderate Young's modulus (10.44 GPa), a high yield stress (170.6 MPa), a high maximum stress (201 MPa) and favorable ductility, being superior to the biomaterials with uniform porous structures in comprehensive mechanical properties. In addition, digital image correlation (DIC) and finite element (FE) simulation were used to unravel the mechanisms governing the deformation and yielding behavior of these biomaterials particularly at the strut junctions. Both DIC and FE simulations confirmed that the deformation and yielding of the FGPB occurred largely in the load-bearing layers but not at the interfaces between layers. Defect-coupled FE models based on solid elements provided further insights into the mechanical responses of the FGPB to compressive loads at both macro- and micro-scales. With the defect-coupled representative volume element model for the FGPB, the Young's modulus and yield stress of the FGPBs were predicted with less than 2% deviations from the experimental data. The study clearly demonstrated the capabilities of combined experimental and computational methods to resolve the uncertainties of the mechanical behavior of FGPBs, which would open up the possibilities of applying various porosity variation strategies for the design of biomimetic AM porous biomaterials. STATEMENT OF SIGNIFICANCE: Functionally graded bone scaffolds significantly promote the recovery of segmental bone defect. In the present study, we present a step-wise topological design of functionally graded porous biomaterial (FGPB) to mimic the structure of the femoral diaphysis. The Ti-6Al-4V FGPB exhibited a superior combination of low density, moderate Young's modulus, high yield stress and maximum stress as well as favorable ductility. The biomechanical performance of FGPB was studied in both macro and micro perspectives. The defect-coupled model revealed the significant yielding in the load-bearing parts and the Young's modulus and yield stress of the FGPBs were predicted with less than 2% deviations from the experimental data. The superiority of combined experimental and computational methods has been confirmed.
Collapse
|
38
|
Kelly CN, Evans NT, Irvin CW, Chapman SC, Gall K, Safranski DL. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:726-736. [PMID: 30813077 DOI: 10.1016/j.msec.2019.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
Additive manufacturing (3D printing) is emerging as a key manufacturing technique in medical devices. Selective laser melted (SLM) Ti-6Al-4V implants with interconnected porosity have become widespread in orthopedic applications where porous structures encourage bony ingrowth and the stiffness of the implant can be tuned to reduce stress shielding. The SLM technique allows high resolution control over design, including the ability to introduce porosity with spatial variations in pore size, shape, and connectivity. This study investigates the effect of construct design and surface treatment on tensile fatigue behavior of 3D printed Ti-6Al-4V. Samples were designed as solid, solid with an additional surface porous layer, or fully porous, while surface treatments included commercially available rotopolishing and SILC cleaning. All groups were evaluated for surface roughness and tested in tension to failure under monotonic and cyclic loading profiles. Surface treatments were shown to reduce surface roughness for all sample geometries. However, only fatigue behavior of solid samples was improved for treated as compared to non-treated surfaces Irrespective of surface treatment and resulting surface roughness, the fatigue strength of 3D printed samples containing bulk or surface porosity was approximately 10% of the ultimate tensile strength of identical 3D printed porous material. This study highlights the relative effect of surface treatment in solid and porous printed samples and the inherent decrease in fatigue properties of 3D printed porous samples designed for osseointegration.
Collapse
Affiliation(s)
- Cambre N Kelly
- Department of Biomedical Engineering, Duke University, United States of America
| | - Nathan T Evans
- School of Materials Science and Engineering, Georgia Institute of Technology, United States of America
| | - Cameron W Irvin
- School of Materials Science and Engineering, Georgia Institute of Technology, United States of America; Renewable Bioproducts Institute, Georgia Institute of Technology, United States of America
| | - Savita C Chapman
- Department of Biomedical Engineering, Georgia Institute of Technology, United States of America
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Duke University, United States of America
| | | |
Collapse
|
39
|
Abstract
Additively manufactured (AM, =3D printed) porous metallic biomaterials with topologically ordered unit cells have created a lot of excitement and are currently receiving a lot of attention given their great potential for improving bone tissue regeneration and preventing implant-associated infections.
Collapse
Affiliation(s)
- Amir A. Zadpoor
- Department of Biomechanical Engineering
- Faculty of Mechanical, Maritime, and Materials Engineering
- Delft University of Technology (TU Delft)
- Delft
- The Netherlands
| |
Collapse
|