1
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2024:S0966-842X(24)00175-6. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Tian Y, Rimal B, Bisanz JE, Gui W, Wolfe TM, Koo I, Murray IA, Nettleford SK, Yokoyama S, Dong F, Koshkin S, Prabhu KS, Turnbaugh PJ, Walk ST, Perdew GH, Patterson AD. Effects of Early Life Exposures to the Aryl Hydrocarbon Receptor Ligand TCDF on Gut Microbiota and Host Metabolic Homeostasis in C57BL/6J Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87005. [PMID: 39140734 PMCID: PMC11323762 DOI: 10.1289/ehp13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) and disruptions in the gastrointestinal microbiota have been positively correlated with a predisposition to factors such as obesity, metabolic syndrome, and type 2 diabetes; however, it is unclear how the microbiome contributes to this relationship. OBJECTIVE This study aimed to explore the association between early life exposure to a potent aryl hydrocarbon receptor (AHR) agonist and persistent disruptions in the microbiota, leading to impaired metabolic homeostasis later in life. METHODS This study used metagenomics, nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics, and biochemical assays to analyze the gut microbiome composition and function, as well as the physiological and metabolic effects of early life exposure to 2,3,7,8-tetrachlorodibenzofuran (TCDF) in conventional, germ-free (GF), and Ahr-null mice. The impact of TCDF on Akkermansia muciniphila (A. muciniphila) in vitro was assessed using optical density (OD 600), flow cytometry, transcriptomics, and MS-based metabolomics. RESULTS TCDF-exposed mice exhibited lower abundances of A. muciniphila, lower levels of cecal short-chain fatty acids (SCFAs) and indole-3-lactic acid (ILA), as well as lower levels of the gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), findings suggestive of disruption in the gut microbiome community structure and function. Importantly, microbial and metabolic phenotypes associated with early life POP exposure were transferable to GF recipients in the absence of POP carry-over. In addition, AHR-independent interactions between POPs and the microbiota were observed, and they were significantly associated with growth, physiology, gene expression, and metabolic activity outcomes of A. muciniphila, supporting suppressed activity along the ILA pathway. CONCLUSIONS These data obtained in a mouse model point to the complex effects of POPs on the host and microbiota, providing strong evidence that early life, short-term, and self-limiting POP exposure can adversely impact the microbiome, with effects persisting into later life with associated health implications. https://doi.org/10.1289/EHP13356.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Penn State, University Park, Pennsylvania, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Jordan E. Bisanz
- Department of Biochemistry and Molecular Biology, Penn State, University Park, Pennsylvania, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Wei Gui
- Huck Institutes of the Life Sciences, Penn State, University Park, Pennsylvania, USA
| | - Trenton M. Wolfe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Shaneice K. Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Sergei Koshkin
- Huck Institutes of the Life Sciences, Penn State, University Park, Pennsylvania, USA
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, USA
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University (Penn State), University Park, Pennsylvania, USA
| |
Collapse
|
3
|
McClure RS, Rericha Y, Waters KM, Tanguay RL. 3' RNA-seq is superior to standard RNA-seq in cases of sparse data but inferior at identifying toxicity pathways in a model organism. FRONTIERS IN BIOINFORMATICS 2023; 3:1234218. [PMID: 37576716 PMCID: PMC10414111 DOI: 10.3389/fbinf.2023.1234218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: The application of RNA-sequencing has led to numerous breakthroughs related to investigating gene expression levels in complex biological systems. Among these are knowledge of how organisms, such as the vertebrate model organism zebrafish (Danio rerio), respond to toxicant exposure. Recently, the development of 3' RNA-seq has allowed for the determination of gene expression levels with a fraction of the required reads compared to standard RNA-seq. While 3' RNA-seq has many advantages, a comparison to standard RNA-seq has not been performed in the context of whole organism toxicity and sparse data. Methods and results: Here, we examined samples from zebrafish exposed to perfluorobutane sulfonamide (FBSA) with either 3' or standard RNA-seq to determine the advantages of each with regards to the identification of functionally enriched pathways. We found that 3' and standard RNA-seq showed specific advantages when focusing on annotated or unannotated regions of the genome. We also found that standard RNA-seq identified more differentially expressed genes (DEGs), but that this advantage disappeared under conditions of sparse data. We also found that standard RNA-seq had a significant advantage in identifying functionally enriched pathways via analysis of DEG lists but that this advantage was minimal when identifying pathways via gene set enrichment analysis of all genes. Conclusions: These results show that each approach has experimental conditions where they may be advantageous. Our observations can help guide others in the choice of 3' RNA-seq vs standard RNA sequencing to query gene expression levels in a range of biological systems.
Collapse
Affiliation(s)
- Ryan S. McClure
- Biological Sciences Division, Pacific Northwest Laboratory, Richland, WA, United States
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest Laboratory, Richland, WA, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
E4orf1 Prevents Progression of Fatty Liver Disease in Mice on High Fat Diet. Int J Mol Sci 2022; 23:ijms23169286. [PMID: 36012550 PMCID: PMC9409018 DOI: 10.3390/ijms23169286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a broad spectrum of liver diseases ranging from steatosis to cirrhosis. There are limited data on prevention of hepatic steatosis or its progression to liver disease. Here, we tested if either transgenic (Tg) doxycycline-induced expression in adipose tissue of E4orf1 (E4), an adenoviral protein, or dietary fat restriction attenuated hepatic steatosis or its progression in mice. Twelve to fourteen-week-old TgE4 mice (E4 group) and control mice were exposed to a 60% (Kcal) high fat diet (HFD) for 20 weeks, while another group of mice on HFD for 10 weeks were switched to a chow diet (chow group) for another 10 weeks. Glycemic control was determined at weeks 10 and 20. Tissues were collected for gene and protein analysis at sacrifice. Compared to control, diet reversal significantly reduced body weight in the chow group, whereas E4 expression attenuated weight gain, despite HFD. E4 mice evinced significantly improved glucose clearance, lower endogenous insulin secretion, reduced serum triglycerides, attenuated hepatic steatosis and inflammation. Interestingly, in spite of weight loss and lower liver fat, chow mice showed significant upregulation of hepatic genes involved in lipid metabolism. Despite HFD, E4 prevents hepatic lipid accumulation and progression of hepatic steatosis, while diet reversal maintains hepatic health, but is unable to improve molecular changes.
Collapse
|
6
|
Popli S, Badgujar PC, Agarwal T, Bhushan B, Mishra V. Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155084. [PMID: 35395291 DOI: 10.1016/j.scitotenv.2022.155084] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Persistent Organic Pollutants (POPs) have become immensely prevalent in the environment as a result of their unique chemical properties (persistent, semi-volatile and bioaccumulative nature). Their occurrence in the soil, water and subsequently in food has become a matter of concern. With food being one of the major sources of exposure, the detrimental impact of these chemicals on the gut microbiome is inevitable. The gut microbiome is considered as an important integrant for human health. It participates in various physiological, biochemical and immunological activities; thus, affects the metabolism and physiology of the host. A myriad of studies have corroborated an association between POP-induced gut microbial dysbiosis and prevalence of disorders. For instance, ingestion of polychlorinated biphenyls, polybrominated diphenyl ethers or organochlorine pesticides influenced bile acid metabolism via alteration of bile salt hydrolase activity of Lactobacillus, Clostridium or Bacteroides genus. At the same time, some chemicals such as DDE have the potential to elevate Proteobacteria and Firmicutes/Bacteriodetes ratio influencing their metabolic activity leading to enhanced short-chain fatty acid synthesis, ensuing obesity or a pre-diabetic state. This review highlights the impact of POPs exposure on the gut microbiota composition and metabolic activity, along with an account of its corresponding consequences on the host physiology. The critical role of gut microbiota in impeding the POPs excretion out of the body resulting in their prolonged exposure and consequently, enhanced degree of toxicity is also emphasized.
Collapse
Affiliation(s)
- Shivani Popli
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| |
Collapse
|
7
|
Tian Y, Rimal B, Gui W, Koo I, Yokoyama S, Perdew GH, Patterson AD. Early Life Short-Term Exposure to Polychlorinated Biphenyl 126 in Mice Leads to Metabolic Dysfunction and Microbiota Changes in Adulthood. Int J Mol Sci 2022; 23:8220. [PMID: 35897801 PMCID: PMC9330872 DOI: 10.3390/ijms23158220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/02/2023] Open
Abstract
Early life exposure to environmental pollutants may have long-term consequences and harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early life 3,3',4,4',5-pentacholorobiphenyl (PCB 126) exposure (24 μg/kg body weight for five days) in mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR- and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor (AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional levels. This study provides evidence for an association between early life environmental pollutant exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key target of environmental chemical exposure.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Wei Gui
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| |
Collapse
|
8
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Dopkins N, Neameh WH, Hall A, Lai Y, Rutkovsky A, Gandy AO, Lu K, Nagarkatti PS, Nagarkatti M. Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. Int J Mol Sci 2021; 22:11801. [PMID: 34769237 PMCID: PMC8583798 DOI: 10.3390/ijms222111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Wurood Hantoosh Neameh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.L.); (K.L.)
| | - Alex Rutkovsky
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.L.); (K.L.)
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (N.D.); (W.H.N.); (A.H.); (A.R.); (A.O.G.); (P.S.N.)
| |
Collapse
|
10
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Tian Y, Gui W, Rimal B, Koo I, Smith PB, Nichols RG, Cai J, Liu Q, Patterson AD. Metabolic impact of persistent organic pollutants on gut microbiota. Gut Microbes 2020; 12:1-16. [PMID: 33295235 PMCID: PMC7734116 DOI: 10.1080/19490976.2020.1848209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence supports that exposure to persistent organic pollutants (POPs) can impact the interaction between the gut microbiota and host. Recent efforts have characterized the relationship between gut microbiota and environment pollutants suggesting additional research is needed to understand potential new avenues for toxicity. Here, we systematically examined the direct effects of POPs including 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and polychlorinated biphenyls (PCB-123 and PCB-156) on the microbiota using metatranscriptomics and NMR- and mass spectrometry-based metabolomics combined with flow cytometry and growth rate measurements (OD600). This study demonstrated that (1) POPs directly and rapidly affect isolated cecal bacterial global metabolism that is associated with significant decreases in microbial metabolic activity; (2) significant changes in cecal bacterial gene expression related to tricarboxylic acid (TCA) cycle as well as carbon metabolism, carbon fixation, pyruvate metabolism, and protein export were observed following most POP exposure; (3) six individual bacterial species show variation in lipid metabolism in response to POP exposure; and (4) PCB-153 (non-coplanar)has a greater impact on bacteria than PCB-126 (coplanar) at the metabolic and transcriptional levels. These data provide new insights into the direct role of POPs on gut microbiota and begins to establish possible microbial toxicity endpoints which may help to inform risk assessment.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA,CONTACT Andrew D. Patterson Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA16802, USA
| |
Collapse
|