1
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2024; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Rusu CC, Kacso I, Moldovan D, Potra A, Tirinescu D, Ticala M, Orasan R, Budurea C, Anton F, Valea A, Bondor CI, Carsote M. Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. Int J Mol Sci 2024; 25:7646. [PMID: 39062887 PMCID: PMC11277084 DOI: 10.3390/ijms25147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic kidney disease (CKD) causes specific hormonal disturbances, such as variations in leptin and testosterone levels and function. These disturbances can promote errors in signaling interaction and cellular information processing and can be implicated in the pathogenesis of atherosclerosis. This study investigates the factors that affect leptin in CKD patients and examines how leptin is related to markers of vascular disease. We conducted a cross-sectional study of 162 patients with CKD in pre-dialysis and dialysis stages. We recorded clinical and laboratory data, including leptin, testosterone, and subclinical atherosclerosis markers like brachial-ankle pulse wave velocity (ba PWV) in pre-dialysis CKD patients and flow-mediated vasodilation (FMD) and nitroglycerin-mediated vasodilation (NMD) in hemodialysis (HD) patients. Leptin was significantly correlated with testosterone in CKD pre-dialysis stages (p < 0.001) and also in HD (p = 0.026), with adipose tissue mass in pre-dialysis stages (p < 0.001), and also in HD (p < 0.001). In women HD patients, leptin correlated with NMD (p = 0.039; r = -0.379); in all HD patients, leptin correlated with C reactive protein (p = 0.007; r = 0.28) and parathormone (p = 0.039; r = -0.220). Our research emphasizes the connection between leptin, adipose tissue, and testosterone in all stages of CKD. Leptin was associated with NMD in HD women and correlated with inflammatory syndrome and parathyroid hormone in all HD patients.
Collapse
Affiliation(s)
- Crina Claudia Rusu
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Diana Moldovan
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Remus Orasan
- Nefromed Dialysis Center, 40 Ana Aslan Street, 400528 Cluj-Napoca, Romania
| | - Cristian Budurea
- Nefromed Dialysis Center, 40 Ana Aslan Street, 400528 Cluj-Napoca, Romania
| | - Florin Anton
- Department of Cardiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
| | - Ana Valea
- Department of Endocrinology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
| | - Cosmina Ioana Bondor
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mara Carsote
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Dionisie Lupu Street, Number 37, Sector 1, 020021 Bucharest, Romania
- Department of Clinical Endocrinology V, "C.I. Parhon" National Institute of Endocrinology, Aviatorilor Ave 34-36, Sector 1, 011863 Bucharest, Romania
| |
Collapse
|
4
|
New Insights into Adiponectin and Leptin Roles in Chronic Kidney Disease. Biomedicines 2022; 10:biomedicines10102642. [PMID: 36289903 PMCID: PMC9599100 DOI: 10.3390/biomedicines10102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is commonly associated with a high burden of comorbidities and poor clinical outcomes. Malnutrition–inflammation–atherosclerosis syndrome is common in the more severe stages of CKD, suggesting a close interplay for these three comorbid conditions. Both malnutrition and obesity are associated with a disturbed adipokine profile and inflammation, contributing to a higher risk of cardiovascular disease (CVD) events. Adiponectin and leptin have important roles in carbohydrate and lipid metabolism, and in the inflammatory process. The effects of adiponectin and leptin alterations in CKD, which are usually increased, and their association with the different comorbidities found in CKD, will be focused on to understand their crosstalk with the risk of CVD events. Nonetheless, although adiponectin and leptin contribute to a higher risk of CVD events, further studies are warranted to fully clarify their roles, especially when different comorbidities exist.
Collapse
|
5
|
Czaja-Stolc S, Potrykus M, Stankiewicz M, Kaska Ł, Małgorzewicz S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022; 14:nu14071457. [PMID: 35406070 PMCID: PMC9002635 DOI: 10.3390/nu14071457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a disease which leads to the development of many other disorders. Excessive accumulation of lipids in adipose tissue (AT) leads to metabolic changes, including hypertrophy of adipocytes, macrophage migration, changes in the composition of immune cells, and impaired secretion of adipokines. Adipokines are cytokines produced by AT and greatly influence human health. Obesity and the pro-inflammatory profile of adipokines lead to the development of chronic kidney disease (CKD) through different mechanisms. In obesity and adipokine profile, there are gender differences that characterize the male gender as more susceptible to metabolic disorders accompanying obesity, including impaired renal function. The relationship between impaired adipokine secretion and renal disease is two-sided. In the developed CKD, the concentration of adipokines in the serum is additionally disturbed due to their insufficient excretion by the excretory system caused by renal pathology. Increased levels of adipokines affect the nutritional status and cardiovascular risk (CVR) of patients with CKD. This article aims to systematize the current knowledge on the influence of obesity, AT, and adipokine secretion disorders on the pathogenesis of CKD and their influence on nutritional status and CVR in patients with CKD.
Collapse
Affiliation(s)
- Sylwia Czaja-Stolc
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
- Correspondence: ; Tel.: +48-(58)-349-27-24
| | - Marta Potrykus
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (Ł.K.)
| | - Marta Stankiewicz
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
| | - Łukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (Ł.K.)
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
| |
Collapse
|
6
|
Miricescu D, Balan DG, Tulin A, Stiru O, Vacaroiu IA, Mihai DA, Popa CC, Enyedi M, Nedelea AS, Nica AE, Stefani C. Impact of adipose tissue in chronic kidney disease development (Review). Exp Ther Med 2021; 21:539. [PMID: 33815612 PMCID: PMC8014972 DOI: 10.3892/etm.2021.9969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a worldwide pandemic health issue. Obesity is associated with the pathogenesis of type 2 diabetes, hypertension, dyslipidemia, cardiovascular diseases, cancer, and kidney diseases. This systemic disease can affect the kidneys by two mechanisms: Indirectly through diabetes mellitus (DM) and hypertension and directly through adipokines secreted by adipose tissue. Obesity is a risk factor for chronic kidney disease (CKD), which is associated with an increased risk of morbidity and mortality among the adult population. Increased visceral adipose tissue leads to renal glomerular hyperfiltration and hyperperfusion, which may lead to glomerular hypertrophy, proteinuria, and CKD development. Adipokines are hormones produced by fat tissue. They are involved in energy homeostasis, sugar and fat metabolism, reproduction, immunity, and thermogenesis control. Hormones and cytokines secreted by adipose tissue contribute to the development and progression of CKD. Decreased serum or urinary adiponectin levels are specific in diabetic and non-diabetic CKD patients, while leptin presents increased levels, and both are associated with the development of glomerulopathy. Excessive adipose tissue is associated with inflammation, oxidative stress (OS), insulin resistance and activation of the renin angiotensin-aldosterone system (RAAS). Therefore, adipose tissue dysfunction plays an important role in the development of CKD.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Tulin
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of General Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Cardiovascular Surgery, ‘Prof. Dr. C.C. Iliescu’ Emergency Institute for Cardiovascular Diseases, 022322 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology and Dialysis, ‘Sf. Ioan’ Emergency Clinical Hospital, 042122 Bucharest, Romania
- Department of Nephrology, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Doina Andrada Mihai
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department II of Diabetes, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
| | - Cristian Constantin Popa
- Department of Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Surgery, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Radiology, ‘Victor Babes’ Private Medical Clinic, 030303 Bucharest, Romania
| | - Andrei Sorin Nedelea
- Department of Urology, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Adriana Elena Nica
- Department of Orthopedics, Anesthesia Intensive Care Unit, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| |
Collapse
|
7
|
The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int J Mol Sci 2021; 22:ijms22094685. [PMID: 33925217 PMCID: PMC8125133 DOI: 10.3390/ijms22094685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Leptin is an adipokine that regulates appetite and body mass and has many other pleiotropic functions, including regulating kidney function. Increased evidence shows that chronic kidney disease (CKD) is associated with hyperleptinemia, but the reasons for this phenomenon are not fully understood. In this review, we focused on potential causes of hyperleptinemia in patients with CKD and the effects of elevated serum leptin levels on patient kidney function and cardiovascular risk. The available data indicate that the increased concentration of leptin in the blood of CKD patients may result from both decreased leptin elimination from the circulation by the kidneys (due to renal dysfunction) and increased leptin production by the adipose tissue. The overproduction of leptin by the adipose tissue could result from: (a) hyperinsulinemia; (b) chronic inflammation; and (c) significant lipid disturbances in CKD patients. Elevated leptin in CKD patients may further deteriorate kidney function and lead to increased cardiovascular risk.
Collapse
|