1
|
Gonçalves DF, Senger LR, Foletto JVP, Michelotti P, Soares FAA, Dalla Corte CL. Caffeine improves mitochondrial function in PINK1 B9-null mutant Drosophila melanogaster. J Bioenerg Biomembr 2023; 55:1-13. [PMID: 36494592 DOI: 10.1007/s10863-022-09952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1B9-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1B9-null flies observed by a decrease in O2 flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINKB9-null mutant flies, increasing the mitochondrial O2 flux compared to untreated PINKB9-null mutant flies. Moreover, caffeine treatment increased O2 flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1B9-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Leahn R Senger
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - João V P Foletto
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Paula Michelotti
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Cormier RJ, Doiron JA, Touaibia M, Surette ME, Pichaud N. Time-dependent metabolome and fatty acid profile changes following a high-fat diet exposure in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103892. [PMID: 36493963 DOI: 10.1016/j.ibmb.2022.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.
Collapse
Affiliation(s)
- Robert J Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Jeremie A Doiron
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Marc E Surette
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada.
| |
Collapse
|
3
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
Affiliation(s)
- Zhudong Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China
| | - Longsheng Xing
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | | | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China.
| |
Collapse
|
4
|
Touaibia M, St-Coeur PD, Duff P, Faye DC, Pichaud N. 5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of the mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Drosophila melanogaster. Eur J Pharmacol 2021; 913:174627. [PMID: 34774497 DOI: 10.1016/j.ejphar.2021.174627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
A series of thiazolidinediones (TZDs) were synthesized and screened for their effect on the mitochondrial respiration as well as on several mitochondrial respiratory system components of Drosophila melanogaster. Substituted and non-substituted 5-benzylidene and 5-benzylthiazolidine-2,4-diones were investigated. The effect of a substitution in position 3, at the nitrogen atom, of the thiozolidine heterocycle was also investigated. The designed TZDs were compared to UK5099, the most potent mitochondrial pyruvate carrier (MPC) inhibitor, in in vitro and in vivo tests. Compared to 5-benzylthiazolidine-2,4-diones 6-7 and 3-benzylthiazolidine-2,4-dione 8, 5-benzylidenethiazolidine-2,4-diones 2-5 showed more inhibitory capacity on mitochondrial respiration. 5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione (3) and 5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5) were among the best compounds that compared well with UK5099. Additionally, TZDs 3 and 5, showed no effects on the non-coupled respiration and weak effects on pathways using substrates such as proline, succinate, and G3P. 5-Benzylidenethiazolidine-2,4-dione 3 showed a positive effect on survival and lifespan when added to Drosophila standard and high fat diet. Interestingly, analog 3 completely reversed the effects of high fat diet on Drosophila longevity and induced metabolic changes which suggests an in vivo inhibition of MPC at the mitochondrial level.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| | | | - Patrick Duff
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Diene Codou Faye
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
5
|
Hraoui G, Breton S, Miron G, Boudreau LH, Hunter-Manseau F, Pichaud N. Mitochondrial responses towards intermittent heat shocks in the eastern oyster, Crassostrea virginica. J Exp Biol 2021; 224:272029. [PMID: 34401903 DOI: 10.1242/jeb.242745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada, H2X 1Y4.,Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Gilles Miron
- Department of Biology, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| |
Collapse
|
6
|
Jørgensen LB, Overgaard J, Hunter-Manseau F, Pichaud N. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using Drosophila. J Exp Biol 2021; 224:jeb.240960. [PMID: 33563650 DOI: 10.1242/jeb.240960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis, we measured mitochondrial oxygen consumption rate in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol, we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affect mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacity was maintained in all species, through oxidation of alternative substrates - proline, succinate and, particularly, glycerol-3-phosphate - suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that correlated with species heat tolerance, such that heat-tolerant species could defend 'normal' mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
7
|
Role of the Mitochondrial Pyruvate Carrier in the Occurrence of Metabolic Inflexibility in Drosophila melanogaster Exposed to Dietary Sucrose. Metabolites 2020; 10:metabo10100411. [PMID: 33066485 PMCID: PMC7602203 DOI: 10.3390/metabo10100411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023] Open
Abstract
Excess dietary carbohydrates are linked to dysregulation of metabolic pathways converging to mitochondria and metabolic inflexibility. Here, we determined the role of the mitochondrial pyruvate carrier (MPC) in the occurrence of this metabolic inflexibility in wild-type (WT) and MPC1-deficient (MPC1def) flies that were exposed to diets with different sucrose concentrations for 15–25 days (Standard Diet: SD, Medium-Sucrose Diet: MSD, and High-Sucrose Diet: HSD). Our results showed that MPC1def flies had lower mitochondrial respiration rates than WT flies on the SD and MSD. However, when exposed to the HSD, WT flies displayed decreased mitochondrial respiration rates compared to MPC1def flies. WT flies exposed to the HSD also displayed increased proline contribution and slightly decreased MPC1 expression. Surprisingly, when fed the MSD and the HSD, few metabolites were altered in WT flies whereas MPC1def flies display significant accumulation of glycogen, glucose, fructose, lactate, and glycerol. Overall, this suggests that metabolic inflexibility starts to occur in WT flies after 15–25 days of exposure to the HSD whereas the MPC1def flies display metabolic inflexibility independently of the diet provided. This study thus highlights the involvement of MPC as an essential protein in Drosophila to maintain proper metabolic homeostasis during changes in dietary resources.
Collapse
|