1
|
Medina A, Bruno J, Alemán JO. Metabolic flux analysis in adipose tissue reprogramming. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00039. [PMID: 38455681 PMCID: PMC10916752 DOI: 10.1097/in9.0000000000000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a growing epidemic in the United States and worldwide and is associated with insulin resistance and cardiovascular disease, among other comorbidities. Understanding of the pathology that links overnutrition to these disease processes is ongoing. Adipose tissue is a heterogeneous organ comprised of multiple different cell types and it is likely that dysregulated metabolism within these cell populations disrupts both inter- and intracellular interactions and is a key driver of human disease. In recent years, metabolic flux analysis, which offers a precise quantification of metabolic pathway fluxes in biological systems, has emerged as a candidate strategy for uncovering the metabolic changes that stoke these disease processes. In this mini review, we discuss metabolic flux analysis as an experimental tool, with a specific emphasis on mass spectrometry with isotope tracing as this is the technique most frequently used for metabolic flux analysis in adipocytes. Furthermore, we examine existing literature that uses metabolic flux analysis to further our understanding of adipose tissue biology. Our group has a specific interest in understanding the role of white adipose tissue inflammation in the progression of cardiometabolic disease, as we know that in obesity the accumulation of pro-inflammatory adipose tissue macrophages is associated with significant morbidity, so we use this as a paradigm throughout our review for framing the application of these experimental techniques. However, there are many other biological applications to which they can be applied to further understanding of not only adipose tissue biology but also systemic homeostasis.
Collapse
Affiliation(s)
- Ashley Medina
- Laboratory of Translational Obesity Research, New York University Grossman School of Medicine, New York, NY, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Joanne Bruno
- Laboratory of Translational Obesity Research, New York University Grossman School of Medicine, New York, NY, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - José O. Alemán
- Laboratory of Translational Obesity Research, New York University Grossman School of Medicine, New York, NY, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Mey JT, Vandagmansar B, Dantas WS, Belmont KP, Axelrod CL, Kirwan JP. Ketogenic propensity is differentially related to lipid-induced hepatic and peripheral insulin resistance. Acta Physiol (Oxf) 2023; 239:e14054. [PMID: 37840478 DOI: 10.1111/apha.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
AIM Determine the ketogenic response (β-hydroxybutyrate, a surrogate of hepatic ketogenesis) to a controlled lipid overload in humans. METHODS In total, nineteen young, healthy adults (age: 28.4 ± 1.7 years; BMI: 22.7 ± 0.3 kg/m2 ) received either a 12 h overnight lipid infusion or saline in a randomized, crossover design. Plasma ketones and inflammatory markers were quantified by colorimetric and multiplex assays. Hepatic and peripheral insulin sensitivity was assessed by the hyperinsulinemic-euglycemic clamp. Skeletal muscle biopsies were obtained to quantify gene expression related to ketone body metabolism and inflammation. RESULTS By design, the lipid overload-induced hepatic (50%, p < 0.001) and peripheral insulin resistance (73%, p < 0.01) in healthy adults. Ketones increased with hyperlipidemia and were subsequently reduced with hyperinsulinemia during the clamp procedure (Saline: Basal = 0.22 mM, Insulin = 0.07 mM; Lipid: Basal = 0.78 mM, Insulin = 0.51 mM; 2-way ANOVA: Lipid p < 0.001, Insulin p < 0.001, Interaction p = 0.07). In the saline control condition, ketones did not correlate with hepatic or peripheral insulin sensitivity. Conversely, in the lipid condition, ketones were positively correlated with hepatic insulin sensitivity (r = 0.59, p < 0.01), but inversely related to peripheral insulin sensitivity (r = -0.64, p < 0.01). Hyperlipidemia increased plasma inflammatory markers, but did not impact skeletal muscle inflammatory gene expression. Gene expression related to ketone and fatty acid metabolism in skeletal muscle increased in response to hyperlipidemia. CONCLUSION This work provides important insight into the role of ketones in human health and suggests that ketone body metabolism is altered at the onset of lipid-induced insulin resistance.
Collapse
Affiliation(s)
- J T Mey
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - B Vandagmansar
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - W S Dantas
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - K P Belmont
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - C L Axelrod
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - J P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Andriessen C, Doligkeit D, Moonen-Kornips E, Mensink M, Hesselink MKC, Hoeks J, Schrauwen P. The impact of prolonged fasting on 24h energy metabolism and its 24h rhythmicity in healthy, lean males: A randomized cross-over trial. Clin Nutr 2023; 42:2353-2362. [PMID: 37862821 DOI: 10.1016/j.clnu.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE Human energy expenditure and substrate oxidation are under circadian control and food intake is a time cue for the human biological clock, leading to 24h feeding-fasting cycles in energy and substrate metabolism. In recent years, (intermittent) fasting protocols have also become popular to improve metabolic health. Here, we aimed to investigate the impact of food intake on the 24h patterns of energy metabolism as well as to provide data on the timeline of changes in energy metabolism that occur upon an extended period of fasting. RESEARCH DESIGN AND METHODS In a randomized, cross-over design, twelve healthy males underwent a 60h fast which was compared to a 60h fed condition. In the fed condition meals were provided at energy balance throughout the study. Conditions were separated by a two week period of habitual diet. Volunteers resided in a respiration chamber for the entire 60h to measure energy expenditure and substrate oxidation hour by hour. Volunteers performed a standardized activity protocol while in the chamber. Blood samples were drawn after 12, 36 and 60h. RESULTS Immediately following the breakfast meal (in the fed condition), fat oxidation became higher in the fasted condition compared to the fed condition and remained elevated throughout the study period. The initial rapid increase in fat oxidation corresponded with a decline in the hepatokine activin A (r = -0.86, p = 0.001). The contribution of fat oxidation to total energy expenditure gradually increased with extended abstinence from food, peaking after 51h of fasting at 160 mg/min. Carbohydrate oxidation stabilized at a low level during the second day of fasting and averaged around 60 mg/min with only modest elevations in response to physical activity. Although 24h energy expenditure was significantly lower with prolonged fasting (11.0 ± 0.4 vs 9.8 ± 0.2 and 10.9 ± 0.3 vs 10.3 ± 0.3 MJ in fed vs fasting, day 2 and 3 respectively, p < 0.01), the 24h fluctuations in energy expenditure were comparable between the fasted and fed condition. The fluctuations in substrate oxidation were, however, significantly (p < 0.001 for both carbohydrate and fat oxidation) altered in the fasted state, favouring fat oxidation. CONCLUSIONS Energy expenditure displays a day-night rhythm, which is independent of food intake. In contrast, the day-night rhythm of both carbohydrate and fat oxidation is mainly driven by food intake. Upon extended fasting, the absolute rate of fat oxidation rapidly increases and keeps increasing during a 60h fast, whereas carbohydrate oxidation becomes progressively diminished. TRIAL REGISTRATION www.trialregister.nl NTR 2042.
Collapse
Affiliation(s)
- Charlotte Andriessen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Daniel Doligkeit
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Esther Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marco Mensink
- Division of Human Nutrition & Health, Chairgroup Nutritional Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Moiz B, Sriram G, Clyne AM. Interpreting metabolic complexity via isotope-assisted metabolic flux analysis. Trends Biochem Sci 2023; 48:553-567. [PMID: 36863894 PMCID: PMC10182253 DOI: 10.1016/j.tibs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Isotope-assisted metabolic flux analysis (iMFA) is a powerful method to mathematically determine the metabolic fluxome from experimental isotope labeling data and a metabolic network model. While iMFA was originally developed for industrial biotechnological applications, it is increasingly used to analyze eukaryotic cell metabolism in physiological and pathological states. In this review, we explain how iMFA estimates the intracellular fluxome, including data and network model (inputs), the optimization-based data fitting (process), and the flux map (output). We then describe how iMFA enables analysis of metabolic complexities and discovery of metabolic pathways. Our goal is to expand the use of iMFA in metabolism research, which is essential to maximizing the impact of metabolic experiments and continuing to advance iMFA and biocomputational techniques.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
6
|
Ragavan M, McLeod MA, Rushin A, Merritt ME. Detecting de novo Hepatic Ketogenesis Using Hyperpolarized [2- 13C] Pyruvate. Front Physiol 2022; 13:832403. [PMID: 35197867 PMCID: PMC8859440 DOI: 10.3389/fphys.2022.832403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022] Open
Abstract
The role of ketones in metabolic health has progressed over the past two decades, moving from what was perceived as a simple byproduct of fatty acid oxidation to a central player in a multiplicity of disease states. Previous work with hyperpolarized (HP) 13C has shown that ketone production can be detected when using precursors that labeled acetyl-CoA at the C1 position, often in tissues that are not normally recognized as ketogenic. Here, we assay metabolism of HP [2-13C]pyruvate in the perfused mouse liver, a classic metabolic testbed where nutritional conditions can be precisely controlled. Livers perfused with long-chain fatty acids or the medium-chain fatty acid octanoate showed no evidence of ketogenesis in the 13C spectrum. In contrast, addition of dichloroacetate, a potent inhibitor of pyruvate dehydrogenase kinase, resulted in significant production of both acetoacetate and 3-hydroxybutyrate from the pyruvate precursor. This result indicates that ketones are readily produced from carbohydrates, but only in the case where pyruvate dehydrogenase activity is upregulated.
Collapse
Affiliation(s)
| | | | | | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Rahim M, Ragavan M, Deja S, Merritt ME, Burgess SC, Young JD. INCA 2.0: A tool for integrated, dynamic modeling of NMR- and MS-based isotopomer measurements and rigorous metabolic flux analysis. Metab Eng 2022; 69:275-285. [PMID: 34965470 PMCID: PMC8789327 DOI: 10.1016/j.ymben.2021.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic flux analysis (MFA) combines experimental measurements and computational modeling to determine biochemical reaction rates in live biological systems. Advancements in analytical instrumentation, such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), have facilitated chemical separation and quantification of isotopically enriched metabolites. However, no software packages have been previously described that can integrate isotopomer measurements from both MS and NMR analytical platforms and have the flexibility to estimate metabolic fluxes from either isotopic steady-state or dynamic labeling experiments. By applying physiologically relevant cardiac and hepatic metabolic models to assess NMR isotopomer measurements, we herein test and validate new modeling capabilities of our enhanced flux analysis software tool, INCA 2.0. We demonstrate that INCA 2.0 can simulate and regress steady-state 13C NMR datasets from perfused hearts with an accuracy comparable to other established flux assessment tools. Furthermore, by simulating the infusion of three different 13C acetate tracers, we show that MFA based on dynamic 13C NMR measurements can more precisely resolve cardiac fluxes compared to isotopically steady-state flux analysis. Finally, we show that estimation of hepatic fluxes using combined 13C NMR and MS datasets improves the precision of estimated fluxes by up to 50%. Overall, our results illustrate how the recently added NMR data modeling capabilities of INCA 2.0 can enable entirely new experimental designs that lead to improved flux resolution and can be applied to a wide range of biological systems and measurement time courses.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular, Nashville, TN, 37212, USA
| | - Mukundan Ragavan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Stanislaw Deja
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shawn C Burgess
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular, Nashville, TN, 37212, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Engineering, Nashville, TN, 37212, USA.
| |
Collapse
|
8
|
Gender-Specific Metabolomics Approach to Kidney Cancer. Metabolites 2021; 11:metabo11110767. [PMID: 34822425 PMCID: PMC8624667 DOI: 10.3390/metabo11110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney malignancy. RCC is more common among men with a 2/1 male/female incidence ratio worldwide. Given the underlying epidemiological differences in the RCC incidence between males and females, we explored the gender specific 1H NMR serum metabolic profiles of RCC patients and their matched controls. A number of differential metabolites were shared by male and female RCC patients. These RCC specific changes included lower lactate, threonine, histidine, and choline levels together with increased levels of pyruvate, N-acetylated glycoproteins, beta-hydroxybutyrate, acetoacetate, and lysine. Additionally, serum lactate/pyruvate ratio was a strong predictor of RCC status regardless of gender. Although only moderate changes in metabolic profiles were observed between control males and females there were substantial gender related differences among RCC patients. Gender specific metabolic features associated with RCC status were identified suggesting that different metabolic panels could be leveraged for a more precise diagnostic.
Collapse
|
9
|
Millard P, Sokol S, Kohlstedt M, Wittmann C, Létisse F, Lippens G, Portais JC. IsoSolve: An Integrative Framework to Improve Isotopic Coverage and Consolidate Isotopic Measurements by Mass Spectrometry and/or Nuclear Magnetic Resonance. Anal Chem 2021; 93:9428-9436. [PMID: 34197087 DOI: 10.1021/acs.analchem.1c01064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational framework based on symbolic calculus that can integrate any isotopic data set by connecting measurements to the chemical structure of the molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework helps to (i) clarify and improve the coverage of isotopic space, (ii) evaluate the complementarity and redundancy of different techniques, (iii) consolidate isotopic data sets, (iv) design experiments, and (v) guide future analytical developments. This framework, which can be applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open-source software that can be readily integrated into data analysis pipelines.
Collapse
Affiliation(s)
- Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Serguei Sokol
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| | - Jean-Charles Portais
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France.,RESTORE, Université de Toulouse, INSERM U1031, CNRS 5070, Université Toulouse III - Paul Sabatier, EFS, Toulouse 31077, France
| |
Collapse
|
10
|
Stagg DB, Gillingham JR, Nelson AB, Lengfeld JE, d'Avignon DA, Puchalska P, Crawford PA. Diminished ketone interconversion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. Mol Metab 2021; 53:101269. [PMID: 34116232 PMCID: PMC8259407 DOI: 10.1016/j.molmet.2021.101269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Throughout the last decade, interest has intensified in intermittent fasting, ketogenic diets, and exogenous ketone therapies as prospective health-promoting, therapeutic, and performance-enhancing agents. However, the regulatory roles of ketogenesis and ketone metabolism on liver homeostasis remain unclear. Therefore, we sought to develop a better understanding of the metabolic consequences of hepatic ketone body metabolism by focusing on the redox-dependent interconversion of acetoacetate (AcAc) and D-β-hydroxybutyrate (D-βOHB). Methods Using targeted and isotope tracing high-resolution liquid chromatography-mass spectrometry, dual stable isotope tracer nuclear magnetic resonance spectroscopy-based metabolic flux modeling, and complementary physiological approaches in novel cell type-specific knockout mice, we quantified the roles of hepatocyte D-β-hydroxybutyrate dehydrogenase (BDH1), a mitochondrial enzyme required for NAD+/NADH-dependent oxidation/reduction of ketone bodies. Results Exogenously administered AcAc is reduced to D-βOHB, which increases hepatic NAD+/NADH ratio and reflects hepatic BDH1 activity. Livers of hepatocyte-specific BDH1-deficient mice did not produce D-βOHB, but owing to extrahepatic BDH1, these mice nonetheless remained capable of AcAc/D-βOHB interconversion. Compared to littermate controls, hepatocyte-specific BDH1 deficient mice exhibited diminished liver tricarboxylic acid (TCA) cycle flux and impaired gluconeogenesis, but normal hepatic energy charge overall. Glycemic recovery after acute insulin challenge was impaired in knockout mice, but they were not more susceptible to starvation-induced hypoglycemia. Conclusions Ketone bodies influence liver homeostasis. While liver BDH1 is not required for whole body equilibration of AcAc and D-βOHB, loss of the ability to interconvert these ketone bodies in hepatocytes results in impaired TCA cycle flux and glucose production. Therefore, through oxidation/reduction of ketone bodies, BDH1 is a significant contributor to hepatic mitochondrial redox, liver physiology, and organism-wide ketone body homeostasis. Exogenously administered acetoacetate is reduced to D-β-hydroxybutyrate, increasing hepatic NAD+/NADH ratio. Liver BDH1 is not required for whole body equilibration of acetoacetate and D-β-hydroxybutyrate. Hepatocyte-specific loss of BDH1 reduces hepatic TCA cycle flux, and TCA-cycle sourced gluconeogenesis. Hepatocyte-specific loss of BDH1 impairs glycemic recovery without provoking starvation-induced hypoglycemia.
Collapse
Affiliation(s)
- David B Stagg
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jacob R Gillingham
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alisa B Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Justin E Lengfeld
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - D André d'Avignon
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|