1
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
2
|
Jahan I, Wang Y, Li P, Hussain S, Song J, Yan J. Comprehensive Analysis of Penicillium Sclerotiorum: Biology, Secondary Metabolites, and Bioactive Compound Potential─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9555-9566. [PMID: 38648511 DOI: 10.1021/acs.jafc.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like β-xylosidases, β-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.
Collapse
Affiliation(s)
- Israt Jahan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yihan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Jiayi Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Yan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| |
Collapse
|
3
|
Mildau K, Ehlers H, Oesterle I, Pristner M, Warth B, Doppler M, Bueschl C, Zanghellini J, van der Hooft JJJ. Tailored Mass Spectral Data Exploration Using the SpecXplore Interactive Dashboard. Anal Chem 2024; 96:5798-5806. [PMID: 38564584 PMCID: PMC11024886 DOI: 10.1021/acs.analchem.3c04444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Untargeted metabolomics promises comprehensive characterization of small molecules in biological samples. However, the field is hampered by low annotation rates and abstract spectral data. Despite recent advances in computational metabolomics, manual annotations and manual confirmation of in-silico annotations remain important in the field. Here, exploratory data analysis methods for mass spectral data provide overviews, prioritization, and structural hypothesis starting points to researchers facing large quantities of spectral data. In this research, we propose a fluid means of dealing with mass spectral data using specXplore, an interactive Python dashboard providing interactive and complementary visualizations facilitating mass spectral similarity matrix exploration. Specifically, specXplore provides a two-dimensional t-distributed stochastic neighbor embedding embedding as a jumping board for local connectivity exploration using complementary interactive visualizations in the form of partial network drawings, similarity heatmaps, and fragmentation overview maps. SpecXplore makes use of state-of-the-art ms2deepscore pairwise spectral similarities as a quantitative backbone while allowing fast changes of threshold and connectivity limitation settings, providing flexibility in adjusting settings to suit the localized node environment being explored. We believe that specXplore can become an integral part of mass spectral data exploration efforts and assist users in the generation of structural hypotheses for compounds of interest.
Collapse
Affiliation(s)
- Kevin Mildau
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB GmbH), 8010 Graz, Austria
- Doctoral
School in Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Henry Ehlers
- Institute
of Visual Computing and Human-Centered Technology, TU Wien, 1040 Vienna, Austria
| | - Ian Oesterle
- Doctoral
School in Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
- Department
of Biophysical Chemistry, University of
Vienna, 1090 Vienna, Austria
| | - Manuel Pristner
- Doctoral
School in Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Maria Doppler
- University
of Natural Resources and Life Sciences (BOKU), 3430 Tulln, Austria
| | - Christoph Bueschl
- University
of Natural Resources and Life Sciences (BOKU), 3430 Tulln, Austria
| | - Jürgen Zanghellini
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Justin J. J. van der Hooft
- Bioinformatics
Group, Wageningen University, 6708PB Wageningen, The Netherlands
- Department
of Biochemistry, University of Johannesburg, 2006 Johannesburg, South Africa
| |
Collapse
|
4
|
Chaves-González LE, Jaikel-Víquez D, Lozada-Alvarado S, Granados-Chinchilla F. Unveiling the fungal color palette: pigment analysis of Fusarium solani species complex and Curvularia verruculosa clinical isolates. Can J Microbiol 2024; 70:135-149. [PMID: 38232349 DOI: 10.1139/cjm-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Fungal species in the Nectriaceae, such as Fusarium spp. (Hypocreales: Nectriaceae), are etiologic agents of hyalohyphomycosis capable of producing violaceous or yellowish pigments under certain conditions, while Curvularia spp. (Pleosporales: Pleosporaceae) are agents of phaeohyphomycosis and typically produce melanin in their cell walls. In nectriaceous and pleosporaceous fungi, these pigments are mainly constituted by polyketides (e.g., azaphilones, naphthoquinones, and hydroxyanthraquinones). Considering the importance of pigments synthesized by these genera, this work focused on the selective extraction of pigments produced by eight Fusarium solani species complex and one Curvularia verruculosa isolate recovered from dermatomycosis specimens, their separation, purification, and posterior chemical analysis. The pigments were characterized through spectral and acid-base analysis, and their maximum production time was determined. Moreover, spectral identification of isolates was carried out to approach the taxonomic specificity of pigment production. Herein we describe the isolation and characterization of three acidic pigments, yellowish and pinkish azaphilones (i.e., coaherin A and sclerotiorin), and a purplish xanthone, reported for the first time in the Nectriaceae and Pleosporaceae, which appear to be synthesized in a species-independent manner, in the case of fusaria.
Collapse
Affiliation(s)
- Luis Enrique Chaves-González
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Jaikel-Víquez
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Stefany Lozada-Alvarado
- Laboratorio Clínico y Banco de Sangre, Hospital del Trauma, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Facultad de Ciencias Básicas, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Goda MS, El-Kattan N, Abdel-Azeem MA, Allam KAM, Badr JM, Nassar NA, Almalki AJ, Alharbi M, Elhady SS, Eltamany EE. Antimicrobial Potential of Different Isolates of Chaetomium globosum Combined with Liquid Chromatography Tandem Mass Spectrometry Chemical Profiling. Biomolecules 2023; 13:1683. [PMID: 38136556 PMCID: PMC10742071 DOI: 10.3390/biom13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
The antimicrobial resistance of pathogenic microorganisms against commercial drugs has become a major problem worldwide. This study is the first of its kind to be carried out in Egypt to produce antimicrobial pharmaceuticals from isolated native taxa of the fungal Chaetomium, followed by a chemical investigation of the existing bioactive metabolites. Here, of the 155 clinical specimens in total, 100 pathogenic microbial isolates were found to be multi-drug resistant (MDR) bacteria. The Chaetomium isolates were recovered from different soil samples, and wild host plants collected from Egypt showed strong inhibitory activity against MDR isolates. Chaetomium isolates displayed broad-spectrum antimicrobial activity against C. albicans, Gram-positive, and Gram-negative bacteria, with inhibition zones of 11.3 to 25.6 mm, 10.4 to 26.0 mm, and 10.5 to 26.5 mm, respectively. As a consecutive result, the minimum inhibitory concentration (MIC) values of Chaetomium isolates ranged from 3.9 to 62.5 µg/mL. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis was performed for selected Chaetomium isolates with the most promising antimicrobial potential against MDR bacteria. The LC-MS/MS analysis of Chaetomium species isolated from cultivated soil at Assuit Governate, Upper Egypt (3), and the host plant Zygophyllum album grown in Wadi El-Arbaein, Saint Katherine, South Sinai (5), revealed the presence of alkaloids as the predominant bioactive metabolites. Most detected bioactive metabolites previously displayed antimicrobial activity, confirming the antibacterial potential of selected isolates. Therefore, the Chaetomium isolates recovered from harsh habitats in Egypt are rich sources of antimicrobial metabolites, which will be a possible solution to the multi-drug resistant bacteria tragedy.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Mohamed A. Abdel-Azeem
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Al-Arish, North Sinai 45511, Egypt;
| | - Kamilia A. M. Allam
- Department of Epidemiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | | | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| |
Collapse
|
6
|
Ayyolath A, Kallingal A, Kundil VT, Suresh AM, Jayadevi Variyar E. Investigating the disease-modifying properties of sclerotiorin in Alzheimer's therapy using acetylcholinesterase inhibition. Chem Biol Drug Des 2023; 102:292-302. [PMID: 37076430 DOI: 10.1111/cbdd.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused due to the damage and loss of neurons in specific brain regions. It is the most common form of dementia observed in older people. The symptoms start with memory loss and gradually cause the inability to speak and do day-to-day activities. The cost of caring for those affected individuals is huge and is probably beyond most developing countries capability. Current pharmacotherapy for AD includes compounds that aim to increase neurotransmitters at nerve endings. This can be achieved by cholinergic neurotransmission through inhibition of the cholinesterase enzyme. The current research aims to find natural substances that can be used as drugs to treat AD. The present work identifies and explains compounds with considerable Acetylcholinesterase (AChE) inhibitory activities. The pigment was extracted from the Penicillium mallochii ARA1 (MT373688.1) strain using ethyl acetate, and the active compound was identified using chromatographic techniques followed by structural confirmation with NMR. AChE inhibition experiments, enzyme kinetics, and molecular dynamics simulation studies were done to explain the pharmacological and pharmacodynamic properties. We identified that the compound sclerotiorin in the pigment has AChE inhibitory activity. The compound is stable and can bind to the enzyme non-competitively. Sclerotiorin obeys all the drug-likeliness parameters and can be developed as a promising drug in treating AD.
Collapse
Affiliation(s)
- Aravind Ayyolath
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Akshay Maniyeri Suresh
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|
7
|
Schilling M, Levasseur M, Barbier M, Oliveira-Correia L, Henry C, Touboul D, Farine S, Bertsch C, Gelhaye E. Wood Degradation by Fomitiporia mediterranea M. Fischer: Exploring Fungal Adaptation Using Metabolomic Networking. J Fungi (Basel) 2023; 9:jof9050536. [PMID: 37233247 DOI: 10.3390/jof9050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.
Collapse
Affiliation(s)
| | - Marceau Levasseur
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | - Lydie Oliveira-Correia
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Céline Henry
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- CNRS, Laboratoire de Chimie Moléculaire (LCM), UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Sibylle Farine
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Eric Gelhaye
- INRAE, IAM, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
8
|
Shen SJ, Feng ZY, Jiang SJ, Liu L, Fu SJ, Chen WH, Sun QY, Chen JJ. Azaphilones from the Fungus Penicillium multicolor LZUC-S2 and Their Antibacterial Activity. Chem Biodivers 2023; 20:e202201180. [PMID: 36785981 DOI: 10.1002/cbdv.202201180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Two new azaphilones, penimultiones A and B, together with seven known analogs were isolated from the culture of Penicillium multicolor LZUC-S2. Their structures were elucidated by detailed spectroscopic data analysis and chemical transformation. Penimultiones A and B belong to a rare class of azaphilones possessing a 1,3-dioxolane moiety. In addition, all compounds were evaluated for their antibacterial activity against five clinically bacterial strains in vitro, and three compounds showed potent antibacterial activity with minimum inhibitory concentration (MIC) values ranging from 12.5 to 50.0 μg/mL.
Collapse
Affiliation(s)
- Shi-Jin Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zi-Yun Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Song-Jie Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li Liu
- Center for Inspection of, Gansu Drug Administration, Lanzhou, 730070, P. R. China
| | - Shi-Jing Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wan-Hong Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qi-Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
9
|
Sousa TF, de Araújo Júnior MB, Peres EG, Souza MP, da Silva FMA, de Medeiros LS, de Souza ADL, de Souza AQL, Yamagishi MEB, da Silva GF, Koolen HHF, De Queiroz MV. Discovery of dual PKS involved in sclerotiorin biosynthesis in Penicillium meliponae using genome mining and gene knockout. Arch Microbiol 2023; 205:75. [PMID: 36708387 DOI: 10.1007/s00203-023-03414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Fungi of the genus Penicillium section Sclerotiora have as their main characteristic the presence of orange-pigmented mycelium, which is associated with sclerotiorin, a chlorinated secondary metabolite of the azaphilone subclass of polyketides. Sclerotiorin presents anti-diabetes, antioxidant, anti-inflammatory, anti-Alzheimer, antiviral, and antimicrobial activities, which has always attracted the attention of researchers worldwide. During our ongoing search for azaphilone-producing Amazonian fungi, the strain of Penicillium MMSRG-058 was isolated as an endophyte from the roots of Duguetia stelechantha and showed great capacity for producing sclerotiorin-like metabolites. Using multilocus phylogeny, this strain was identified as Penicillium meliponae. Moreover, based on the genome mining of this strain through the reverse approach, a cluster of putative biosynthetic genes (BGC) responsible for the biosynthesis of sclerotiorin-like metabolites (scl cluster) was identified. The knockout of the sclA (highly reducing PKS) and sclI (non-reducing PKS) genes resulted in mutants with loss of mycelial pigmentation and terminated the biosynthesis of sclerotiorin-like metabolites: geumsanol B, chlorogeumsanol B, 7-deacetylisochromophilone VI, isochromophilone VI, ochrephilone, isorotiorin, and sclerotiorin. Based on these results, a biosynthetic pathway was proposed considering the homology of BGC scl genes with the azaphilone BGCs that have already been functionally characterized.
Collapse
Affiliation(s)
- Thiago F Sousa
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Embrapa Amazônia Ocidental, Manaus, 69010-970, Brazil.,Laboratório de Genética Molecular e de Microrganismos, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, 69103-128, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Mayane P Souza
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Felipe M A da Silva
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Lívia S de Medeiros
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil
| | - Afonso D L de Souza
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Antonia Q L de Souza
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | | | | | - Hector H F Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil
| | - Marisa V De Queiroz
- Laboratório de Genética Molecular e de Microrganismos, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
10
|
Hebra T, Eparvier V, Touboul D. Nitrogen Enriched Solid-State Cultivation for the Overproduction of Azaphilone Red Pigments by Penicillium sclerotiorum SNB-CN111. J Fungi (Basel) 2023; 9:jof9020156. [PMID: 36836271 PMCID: PMC9958536 DOI: 10.3390/jof9020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Azaphilones are microbial specialized metabolites employed as yellow, orange, red or purple pigments. In particular, yellow azaphilones react spontaneously with functionalized nitrogen groups, leading to red azaphilones. In this study, a new two-step solid-state cultivation process to produce specific red azaphilones pigments was implemented, and their chemical diversity was explored based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and a molecular network. This two-step procedure first implies a cellophane membrane allowing accumulating yellow and orange azaphilones from a Penicillium sclerotiorum SNB-CN111 strain, and second involves the incorporation of the desired functionalized nitrogen by shifting the culture medium. The potential of this solid-state cultivation method was finally demonstrated by overproducing an azaphilone with a propargylamine side chain, representing 16% of the metabolic crude extract mass.
Collapse
Affiliation(s)
- Téo Hebra
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Correspondence: (V.E.); (D.T.)
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
- Correspondence: (V.E.); (D.T.)
| |
Collapse
|
11
|
Combining OSMAC, metabolomic and genomic methods for the production and annotation of halogenated azaphilones and ilicicolins in termite symbiotic fungi. Sci Rep 2022; 12:17310. [PMID: 36243836 PMCID: PMC9569342 DOI: 10.1038/s41598-022-22256-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023] Open
Abstract
We gathered a collection of termite mutualistic strains from French Guiana to explore the metabolites of symbiotic microorganisms. Molecular networks reconstructed from a metabolomic analysis using LC-ESI-MS/MS methodology led us to identify two families of chlorinated polyketides, i.e., azaphilones from Penicillium sclerotiorum and ilicicolins from Neonectria discophora. To define the biosynthetic pathways related to these two types of scaffolds, we used a whole genome sequencing approach followed by hybrid assembly from short and long reads. We found two biosynthetic gene clusters, including two FAD-dependent halogenases. To exploit the enzymatic promiscuity of the two identified FAD halogenases, we sought to biosynthesize novel halogenated metabolites. An OSMAC strategy was used and resulted in the production of brominated analogs of ilicicolins and azaphilones as well as iodinated analogs of azaphilones.
Collapse
|
12
|
Classification of Environmental Strains from Order to Genus Levels Using Lipid and Protein MALDI-ToF Fingerprintings and Chemotaxonomic Network Analysis. Microorganisms 2022; 10:microorganisms10040831. [PMID: 35456880 PMCID: PMC9032901 DOI: 10.3390/microorganisms10040831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, MALDI-ToF mass spectrometry has become an efficient and widely-used tool for identifying clinical isolates. However, its use for classification and identification of environmental microorganisms remains limited by the lack of reference spectra in current databases. In addition, the interpretation of the classical dendrogram-based data representation is more difficult when the quantity of taxa or chemotaxa is larger, which implies problems of reproducibility between users. Here, we propose a workflow including a concurrent standardized protein and lipid extraction protocol as well as an analysis methodology using the reliable spectra comparison algorithm available in MetGem software. We first validated our method by comparing protein fingerprints of highly pathogenic bacteria from the Robert Koch Institute (RKI) open database and then implemented protein fingerprints of environmental isolates from French Guiana. We then applied our workflow for the classification of a set of protein and lipid fingerprints from environmental microorganisms and compared our results to classical genetic identifications using 16S and ITS region sequencing for bacteria and fungi, respectively. We demonstrated that our protocol allowed general classification at the order and genus level for bacteria whereas only the Botryosphaeriales order can be finely classified for fungi.
Collapse
|
13
|
Liu L, Wang Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 2021; 106:469-484. [PMID: 34921328 DOI: 10.1007/s00253-021-11729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed. KEY POINTS: • Azaphilic addition reaction of natural azaphilone is biocompatible • Red Monascus pigment is a classic example of azaphilone alkaloids • Azaphilone alkaloids are alterative natural food colorant.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|