1
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Darshi M, Tumova J, Saliba A, Kim J, Baek J, Pennathur S, Sharma K. Crabtree effect in kidney proximal tubule cells via late-stage glycolytic intermediates. iScience 2023; 26:106462. [PMID: 37091239 PMCID: PMC10119590 DOI: 10.1016/j.isci.2023.106462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
The Crabtree effect is defined as a rapid glucose-induced repression of mitochondrial oxidative metabolism and has been described in yeasts and tumor cells. Using plate-based respirometry, we identified the Crabtree effect in normal (non-tumor) kidney proximal tubule epithelial cells (PTEC) but not in other kidney cells (podocytes or mesangial cells) or mammalian cells (C2C12 myoblasts). Glucose-induced repression of respiration was prevented by reducing glycolysis at the proximal step with 2-deoxyglucose and partially reversed by pyruvate. The late-stage glycolytic intermediates glyceraldehyde 3-phosphate, 3-phosphoglycerate, and phosphoenolpyruvate, but not the early-stage glycolytic intermediates or lactate, inhibited respiration in permeabilized PTEC and kidney cortex mitochondria, mimicking the Crabtree effect. Studies in diabetic mice indicated a pattern of increased late-stage glycolytic intermediates consistent with a similar pattern occurring in vivo. Our results show the unique presence of the Crabtree effect in kidney PTEC and identify the major mediators of this effect.
Collapse
Affiliation(s)
- Manjula Darshi
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jana Tumova
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Afaf Saliba
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jiwan Kim
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Judy Baek
- Department of Internal Medicine-Nephrology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Baek J, Sas K, He C, Nair V, Giblin W, Inoki A, Zhang H, Yingbao Y, Hodgin J, Nelson RG, Brosius FC, Kretzler M, Stemmer PM, Lombard DB, Pennathur S. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J Biol Chem 2023; 299:102960. [PMID: 36736426 PMCID: PMC9996370 DOI: 10.1016/j.jbc.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.
Collapse
Affiliation(s)
- Judy Baek
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelli Sas
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenchen He
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - William Giblin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongyu Zhang
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Yingbao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Guo L, Chen S, Ou L, Li S, Ye ZN, Liu HF. Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond. Diabetes Metab Syndr Obes 2022; 15:1961-1974. [PMID: 35783031 PMCID: PMC9248815 DOI: 10.2147/dmso.s369090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is a key intermediate of various metabolic pathways including tricarboxylic acid (TCA) cycle, anabolic and catabolic reactions of amino acids, and collagen biosynthesis. Meanwhile, AKG also participates in multiple signaling pathways related to cellular redox regulation, epigenetic processes, and inflammation response. Emerging evidence has shown that kidney diseases like diabetic nephropathy and renal ischemia/reperfusion injury are associated with metabolic disorders. In consistence with metabolic role of AKG, further metabolomics study demonstrated a dysregulated AKG level in kidney diseases. Intriguingly, earlier studies during the years of 1980s and 1990s indicated that AKG may benefit wound healing and surgery recovery. Recently, interests on AKG are arising again due to its protective roles on healthy ageing, which may shed light on developing novel therapeutic strategies against age-related diseases including renal diseases. This review will summarize the physiological and pathological properties of AKG, as well as the underlying molecular mechanisms, with a special emphasis on kidney diseases.
Collapse
Affiliation(s)
- Lijing Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shihua Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Liping Ou
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Correspondence: Zhen-Nan Ye; Hua-Feng Liu, Email ;
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|