1
|
Vanmaele A, Bouwens E, Hoeks SE, Kindt A, Lamont L, Fioole B, Budde RP, Ten Raa S, Hussain B, Oliveira-Pinto J, Ijpma AS, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, de Bruin JL, Hankemeier T, de Rijke Y, Verhagen HJ, Boersma E, Kardys I. Targeted plasma multi-omics propose glutathione, glycine and serine as biomarkers for abdominal aortic aneurysm growth on serial CT scanning. Atherosclerosis 2024; 398:118620. [PMID: 39378678 DOI: 10.1016/j.atherosclerosis.2024.118620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) patients undergo uniform imaging surveillance until reaching the surgical threshold. In spite of the ongoing exploration of AAA pathophysiology, biomarkers for personalized surveillance are lacking. This study aims to identify potential circulating biomarkers for AAA growth on serial CT scans. METHODS Patients with an AAA (maximal diameter ≥40 mm) were included in this multicentre, prospective cohort study. Participants underwent baseline blood sampling and yearly CT-imaging to determine AAA diameter and volume. Proteins and metabolites were measured using proximity extension assay (Olink Cardiovascular III) or separate ELISA panels, and mass-spectrometry (LC-TQMS), respectively. Linear mixed-effects, orthogonal partial least squares, and Cox regression were used to explore biomarker associations with AAA volume growth rate and the risk of surpassing the surgical threshold, as formulated by current guidelines. RESULTS 271 biomarkers (95 proteins, 176 metabolites) were measured in 109 (90.8 % male) patients with mean age 72. Median baseline maximal AAA diameter was 47.8 mm, volume 109 mL. Mean annual AAA volume growth rate was 11.5 %, 95 % confidence interval (CI) (10.4, 12.7). Median follow-up time was 23.2 months, 49 patients reached the surgical threshold. Patients with one standard deviation (SD) higher glutathione and glycine levels at baseline had an AAA volume growth rate that respectively was 1.97 %, 95%CI (0.97, 2.97) and 1.74 %, 95%CI (0.78, 2.71) larger, relative to the actual aneurysm size. Serine was associated with the risk of reaching the surgical threshold, independent of age and baseline AAA size (cause-specific hazard ratio per SD difference 1.78, 95%CI (1.30, 2.44)). CONCLUSIONS Among multiple intertwined biomarkers related to AAA pathophysiology and progression, glutathione, glycine and serine were most promising.
Collapse
Affiliation(s)
- Alexander Vanmaele
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Elke Bouwens
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Ricardo Pj Budde
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology, Beatrix Hospital, Gorinchem, the Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Arne S Ijpma
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jorg L de Bruin
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands
| | - Hence Jm Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
3
|
Zheng S, Tsao PS, Pan C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat Commun 2024; 15:5652. [PMID: 38969659 PMCID: PMC11226445 DOI: 10.1038/s41467-024-49921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Shufen Zheng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
- Stanford Cardiovascular Institute, Stanford University, California, USA.
- VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Cuiping Pan
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China.
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wang Q, Lv H, Ainiwan M, Yesitayi G, Abudesimu A, Siti D, Aizitiaili A, Ma X. Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang II-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem 2024; 479:1767-1786. [PMID: 38485805 DOI: 10.1007/s11010-024-04961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 07/18/2024]
Abstract
Indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan, has been proven to fulfill an essential function in cardiovascular disease (CVD) and nerve regeneration disease. However, the role of IPA in aortic dissection (AD) has not been revealed. We aimed to investigate the role of IPA in the pathogenesis of AD and the underlying mechanisms of IPA in endothelial dysfunction. Untargeted metabolomics has been employed to screen the plasma metabolic profile of AD patients in comparison with healthy individuals. Network pharmacology provides insights into the potential molecular mechanisms underlying IPA. 3-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang II) were administered to induce AD in mice, while human umbilical vein endothelial cells (HUVECs) were employed for in vitro validation of the signaling pathways predicted by network pharmacology. A total of 224 potentially differential plasma metabolites were identified in the AD patients, with 110 up-regulated metabolites and 114 down-regulated metabolites. IPA was the most significantly decreased metabolite involved in tryptophan metabolism. Bcl2, caspase3, and AKT1 were predicted as the target genes of IPA by network pharmacology and molecular docking. IPA suppressed Ang II-induced apoptosis, intracellular ROS generation, inflammation, and endothelial tight junction (TJ) loss. Animal experiments demonstrated that administration of IPA alleviated the occurrence and severity of AD in mice. Taken together, we identified a previously unexplored association between tryptophan metabolite IPA and AD, providing a novel perspective on the underlying mechanism through which IPA mitigates endothelial dysfunction to protect against AD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Hui Lv
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Asiya Abudesimu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Dilixiati Siti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
5
|
Teng F, Tang Y, Lu Z, Chen Z, Guo Q. Adenosine 5'-Monophosphate-to-Threonine Ratio Promotes Abdominal Aortic Aneurysms via Up-Regulation of HLA-DR on Natural Killer Cells: A Bidirectional Mendelian Randomized Analysis. Biomedicines 2024; 12:1179. [PMID: 38927386 PMCID: PMC11200785 DOI: 10.3390/biomedicines12061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Objective: Immune-metabolic interactions may have causal and therapeutic impacts on abdominal aortic aneurysms (AAAs). However, due to the lack of research on the relationship between immune-metabolic interactions and AAAs, further exploration of the mechanism faces challenges. Methods: A two-sample, two-step mediation analysis with Mendelian randomization (MR) based on genome-wide association studies (GWASs) was performed to determine the causal associations among blood immune cell signatures, metabolites, and AAAs. The stability, heterogeneity, and pleiotropy of the results were verified using a multivariate sensitivity analysis. Results: After multiple two-sample MRs using the AAA data from two large-scale GWAS databases, we determined that the human leukocyte antigen-DR (HLA-DR) levels on HLA-DR + natural killer (NK) cells (HLA-DR/NK) were associated with the causal effect of an AAA, with consistent results in the two databases (FinnGen: odds ratio (OR) = 1.054, 95% confidence interval (CI): 1.003-1.067, p-value = 0.036; UK Biobank: OR = 1.149, 95% CI: 1.046-1.261, p-value = 0.004). The metabolites associated with the risk of developing an AAA were enriched to find a specific metabolic model. We also found that the ratio of adenosine 5'-monophosphate (AMP) to threonine could act as a potential mediator between the HLA/NK and an AAA, with a direct effect (beta effect = 0.0496) and an indirect effect (beta effect = 0.0029). The mediation proportion was 5.56%. Conclusions: Our study found that an up-regulation of HLA-DR on HLA-DR/NK cells can increase the risk of an AAA via improvements in the AMP-to-threonine ratio, thus providing a potential new biomarker for the prediction and treatment of AAAs.
Collapse
Affiliation(s)
- Fei Teng
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China;
| | - Youyin Tang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China;
| | - Zhangyu Lu
- West China School of Medicine, Sichuan University, No. 17 South Renming Road, Chengdu 610094, China;
| | - Zheyu Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China;
| | - Qiang Guo
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China;
| |
Collapse
|
6
|
Qian Z, Huang Y, Zhang Y, Yang N, Fang Z, Zhang C, Zhang L. Metabolic clues to aging: exploring the role of circulating metabolites in frailty, sarcopenia and vascular aging related traits and diseases. Front Genet 2024; 15:1353908. [PMID: 38415056 PMCID: PMC10897029 DOI: 10.3389/fgene.2024.1353908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background: Physical weakness and cardiovascular risk increase significantly with age, but the underlying biological mechanisms remain largely unknown. This study aims to reveal the causal effect of circulating metabolites on frailty, sarcopenia and vascular aging related traits and diseases through a two-sample Mendelian Randomization (MR) analysis. Methods: Exposures were 486 metabolites analyzed in a genome-wide association study (GWAS), while outcomes included frailty, sarcopenia, arterial stiffness, atherosclerosis, peripheral vascular disease (PAD) and aortic aneurysm. Primary causal estimates were calculated using the inverse-variance weighted (IVW) method. Methods including MR Egger, weighted median, Q-test, and leave-one-out analysis were used for the sensitive analysis. Results: A total of 125 suggestive causative associations between metabolites and outcomes were identified. Seven strong causal links were ultimately identified between six metabolites (kynurenine, pentadecanoate (15:0), 1-arachidonoylglycerophosphocholine, androsterone sulfate, glycine and mannose) and three diseases (sarcopenia, PAD and atherosclerosis). Besides, metabolic pathway analysis identified 13 significant metabolic pathways in 6 age-related diseases. Furthermore, the metabolite-gene interaction networks were constructed. Conclusion: Our research suggested new evidence of the relationship between identified metabolites and 6 age-related diseases, which may hold promise as valuable biomarkers.
Collapse
Affiliation(s)
- Zonghao Qian
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Fang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Tian Y, Li G, Du X, Zeng T, Chen L, Xu W, Gu T, Tao Z, Lu L. Integration of LC-MS-Based and GC-MS-Based Metabolic Profiling to Reveal the Effects of Domestication and Boiling on the Composition of Duck Egg Yolks. Metabolites 2023; 13:metabo13010135. [PMID: 36677059 PMCID: PMC9866831 DOI: 10.3390/metabo13010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Egg yolks contain abundant lipids, proteins, and minerals that provide not only essential nutrients for embryonic development but also cheap sources of nutrients for consumers worldwide. Previous composition analyses of egg yolks primarily focused on nutrients such as lipids and minerals. However, few studies have reported the effects of domestication and heating on yolk composition and characteristics. The objective of this study was to investigate the impact of domestication and boiling on the metabolite contents of egg yolks via untargeted metabolomics using GC-MS and LC-MS. In this study, eggs were collected from Fenghua teals, captive mallards, and Shaoxing ducks. Twelve duck eggs (half raw and half cooked) were randomly selected from each variety, and the egg yolks were separated for metabolic profiling. The analysis identified 1205 compounds in the egg yolks. Domestication generated more differential metabolites than boiling, which indicated that the changes in the metabolome of duck egg yolk caused by domestication were greater than those caused by boiling. In a comparative analysis of domestic and mallard ducks, 48 overlapping differential metabolites were discovered. Among them, nine metabolites were upregulated in domesticated ducks, including monoolein, emodin, daidzein, genistein, and glycitein, which may be involved in lipid metabolism; some of them may also act as phytoestrogens (flavonoids). Another 39 metabolites, including imethylethanolamine, harmalan, mannitol, nornicotine, linoleic acid, diphenylamine, proline betaine, alloxanthin, and resolvin d1, were downregulated by domestication and were linked to immunity, anti-inflammatory, antibacterial, and antioxidant properties. Furthermore, four overlapping differential metabolites that included amino acids and dipeptides were discovered in paired comparisons of the raw and boiled samples. Our findings provided new insights into the molecular response of duck domestication and supported the use of metabolomics to examine the impact of boiling on the composition of egg yolks.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-571-8640-6682
| |
Collapse
|
9
|
Chao de la Barca JM, Richard A, Robert P, Eid M, Fouquet O, Tessier L, Wetterwald C, Faure J, Fassot C, Henrion D, Reynier P, Loufrani L. Metabolomic Profiling of Angiotensin-II-Induced Abdominal Aortic Aneurysm in Ldlr -/- Mice Points to Alteration of Nitric Oxide, Lipid, and Energy Metabolisms. Int J Mol Sci 2022; 23:ijms23126387. [PMID: 35742839 PMCID: PMC9223449 DOI: 10.3390/ijms23126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysm is the second-most common disease affecting the aorta worldwide after atherosclerosis. While several clinical metabolomic studies have been reported, no study has reported deep metabolomic phenotyping in experimental animal models of aortic aneurysm. We performed a targeted metabolomics study on the blood and aortas of an experimental mice model of aortic aneurysm generated by high-cholesterol diet and angiotensin II in Ldlr−/− mice. The mice model showed a significant increase in media/lumen ratio and wall area, which is associated with lipid deposition within the adventitia, describing a hypertrophic remodeling with an aneurysm profile of the abdominal aorta. Altered aortas showed increased collagen remodeling, disruption of lipid metabolism, decreased glucose, nitric oxide and lysine metabolisms, and increased polyamines and asymmetric dimethylarginine (ADMA) production. In blood, a major hyperlipidemia was observed with decreased concentrations of glutamine, glycine, taurine, and carnitine, and increased concentrations of the branched amino acids (BCAA). The BCAA/glycine and BCAA/glutamine ratios discriminated with very good sensitivity and specificity between aneurysmatic and non-aneurysmatic mice. To conclude, our results reveal that experimental induction of aortic aneurysms causes a profound alteration in the metabolic profile in aortas and blood, mainly centered on an alteration of NO, lipid, and energetic metabolisms.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Alexis Richard
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Pauline Robert
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Maroua Eid
- Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire (CHU), 49100 Angers, France; (M.E.); (O.F.)
| | - Olivier Fouquet
- Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire (CHU), 49100 Angers, France; (M.E.); (O.F.)
| | - Lydie Tessier
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Céline Wetterwald
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Justine Faure
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Celine Fassot
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Daniel Henrion
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Angers University Hospital (CHU), 49100 Angers, France
| | - Pascal Reynier
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Laurent Loufrani
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Correspondence: ; Tel.: +33-244688263
| |
Collapse
|
10
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|