1
|
Mosoni L, Germond A, Coudy-Gandilhon C, Malige M, Claustre A, Delabrise C, Djelloul-Mazouz M, Delorme Y, Hermet J, Fafournoux P, Combaret L, Polge C, Maurin AC, Taillandier D. Knockout of the Muscle-Specific E3 Ligase MuRF1 Affects Liver Lipid Metabolism upon Dexamethasone Treatment in Mice. ACS OMEGA 2024; 9:45610-45623. [PMID: 39554453 PMCID: PMC11561631 DOI: 10.1021/acsomega.4c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
In order to preserve muscle mass during catabolic states, investigators are actively searching for a specific inhibitor of MuRF1, the only known E3 ligase that can target muscle contractile proteins for their degradation. However, what would be the consequences of such inhibitors on other organs, both in the short and long term? Indeed, skeletal muscles can provide amino acids for liver gluconeogenesis, which is a crucial adaptation for maintaining glucose homeostasis upon elevated energy demands (e.g., during prolonged starvation). Comparing 3-month-old wild-type and MuRF1-KO mice, we measured tissue weights, liver glycogen, lipid and protein content, and liver biochemical composition using Fourier transform infrared (FTIR) spectrometry in control animals and in dexamethasone (Dex)-treated animals. Dex induces a catabolic situation with muscle atrophy and lipid deposits in the liver. In response to Dex treatment, liver glycogen, lipid, and protein content increased in wild type (WT) and MuRF1-KO mice. We found that MuRF1 deletion differentially affected organ weights, the liver of KO mice being hypertrophied upon Dex treatment when compared to WT mice. Upon Dex treatment, muscle mass was preserved in MuRF1-KO mice, and by contrast, liver lipid content increased more in these animals than in WT mice. PLS-DA analysis of FTIR showed that the levels of 13 markers were significantly altered in KO vs WT mice, witnessing profound alterations of lipid, protein, and glycogen content in the liver due to the absence of MuRF1. Using Nile red and oil red lipid staining, we also found that both membrane-linked lipids and intracellular lipid droplets were altered due to the absence of MuRF1. Altogether, it seems that when the liver is deprived of the possibility of obtaining amino acids from muscle upon Dex treatment, there is a concomitant increase in tissue weight and anabolic activity.
Collapse
Affiliation(s)
- Laurent Mosoni
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Arno Germond
- UR370,
QuaPA, Qualité des Produits Animaux, INRAE, F-63000 Clermont-Ferrand, France
| | - Cécile Coudy-Gandilhon
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Mélodie Malige
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Agnès Claustre
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Coralie Delabrise
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Mehdi Djelloul-Mazouz
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Yoann Delorme
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Julien Hermet
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Pierre Fafournoux
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Lydie Combaret
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Cécile Polge
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Daniel Taillandier
- Université
Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Jeong D, Park K, Lee J, Choi J, Du H, Jeong H, Li L, Sakai K, Kang S. Effects of Resistance Exercise and Essential Amino Acid Intake on Muscle Quality, Myokine, and Inflammation Factors in Young Adult Males. Nutrients 2024; 16:1688. [PMID: 38892621 PMCID: PMC11174838 DOI: 10.3390/nu16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Recently, many studies have been devoted to discovering nutrients for exercise-like effects. Resistance exercise and the intake of essential amino acids (EAAs) are known to be factors that can affect muscle mass and strength improvement. The purpose of this study was to investigate changes in muscle quality, myokines, and inflammation in response to resistance exercise and EAA supplementation. METHODS Thirty-four males volunteered to participate in this study. They were assigned to four groups: (1) placebo (CO), (2) resistance exercise (RE), (3) EAA supplementation, and (4) RE + EAA supplementation. Body composition, muscle quality, myokines, and inflammation were measured at baseline and four weeks after treatment. RESULTS Lean body fat had decreased in both RE and RE + EAA groups. Lean body mass had increased in only the RE + EAA group. In all groups except for CO, irisin, myostatin A, and TNF-α levels had decreased. The grip strength of the right hand and trunk flexion peak torque increased in the RE group. The grip strength of the left hand, trunk flexion peak torque, and knee flexion peak torque of the left leg were increased in RE + EAA. CONCLUSIONS RE, EAA, and RE + EAA could effectively improve the muscle quality, myokine, and inflammation factors of young adult males. This finding highlights the importance of resistance exercise and amino acid intake.
Collapse
Affiliation(s)
- Deokhwa Jeong
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Kyumin Park
- Center for Sports Science in Gangwon, Chuncheon 24239, Gangwon-do, Republic of Korea;
| | - Jinseok Lee
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Jiye Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Haifeng Du
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Hyeongmo Jeong
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Liangliang Li
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Kenji Sakai
- Chemicals & Life Science Division, Nagase Korea Corporation, Seoul 04527, Republic of Korea;
| | - Sunghwun Kang
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| |
Collapse
|
3
|
Yang Y, Yang X, Huang Y, Liu S, Niu Y, Fu L. Resistance exercise alleviates dexamethasone-induced muscle atrophy via Sestrin2/MSTN pathway in C57BL/6J mice. Exp Cell Res 2023; 432:113779. [PMID: 37709247 DOI: 10.1016/j.yexcr.2023.113779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
AIM It has long been recognized that resistance exercise can substantially increase skeletal muscle mass and strength, but whether it can protect against glucocorticoid-induced muscle atrophy and its potential mechanism is yet to be determined. This study aimed to investigate the protective effects of resistance exercise in dexamethasone-induced muscle atrophy and elucidate the possible function of exercise-induced protein Sestrin2 in this process. METHODS Eight-week-old male C57BL/6J mice carried out the incremental mouse ladder exercise for 11 weeks. Two weeks before the end of the intervention, mice were daily intraperitoneally injected with dexamethasone. Body composition, muscle mass, and exercise performance were examined to evaluate muscle atrophy. In vitro, C2C12 cells were used for RT-qPCR, Western Blot, and immunofluorescence experiments to elucidate the potential mechanism. RESULTS Our results showed that long-term resistance exercise is an effective intervention for dexamethasone-induced muscle atrophy. We also found that Sestrin2 plays a vital role in dexamethasone-induced muscle atrophy. In both animal (P = .0006) and cell models (P = .0266), dexamethasone intervention significantly reduced the protein expression of Sestrin2, which was increased (P = .0112) by resistance exercise. Inversely, overexpression of Sestrin2 improved (P < .0001) dexamethasone-induced myotube cell atrophy by reducing the activation of the ubiquitin-proteasome pathway via inhibiting Forkhead box O3 (FoxO3a) and myostatin (MSTN)/small mother against decapentaplegic (Smad) signaling pathways. CONCLUSION Taken together, our results indicated that Sestrin2 may serve as an effective molecule that mimics the protective effect of resistance exercise on dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuege Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Yating Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
4
|
Mahmoud MF, Tawfeek N, Ali N, Hasan RA, Sobeh M, El-Shazly AM. Salix babylonica L. mitigates pancreatic damage by regulating the Beclin-P62/SQSTM1 autophagy pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116425. [PMID: 37031826 DOI: 10.1016/j.jep.2023.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salix babylonica L. belongs to the genus Salix, family Salicaceae. It is traditionally used as an antipyretic, antirheumatic, antidiabetic and for the treatment of ulcers and parasite skin diseases. It also has a range of pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidant, and antibacterial effects. However, there are no reports on the phytochemical profile and efficacy of its leaves extract to modulate dexamethasone induced pancreatic damage. AIM OF THE STUDY The present study was performed to annotate the phytoconstituents of Salix babylonica leaf extract and explore whether and how it could modulate dexamethasone-induced pancreatic damage and the role of oxidative stress and autophagy in mediating its protective effects. MATERIALS AND METHODS Wistar rats were used for this study. Salix babylonica in two dose levels (100 and 200 mg/kg) or metformin (50 mg/kg) was given by oral gavage concurrently with dexamethasone which was injected SC in a dose of 10 mg/kg for 4 consecutive days. RESULTS LC-MS analysis furnished 84 secondary metabolites belonging to phenolic acids, salicinoids, proanthocyanidins, flavonoids, cyclohexanediol glycosides, and hydroxy fatty acids. S. babylonica at both dose levels and metformin decreased the elevated pancreatic beclin while elevated the decreased pancreatic P62/SQSTM1 content compared to dexamethasone. These effects were associated with improved histopathological changes, glycemic and lipid parameters indicating that there might be a connection between autophagy and dexamethasone-induced pancreatic damage. Given that the level of GSH was negatively correlated with the levels of beclin and positively correlated with P62/SQSTM1, while both MDA and NO levels were positively correlated with beclin and negatively correlated with P62/SQSTM1, it seems that dexamethasone induced autophagy may be attributed to dexamethasone induced pancreatic oxidative stress. CONCLUSION Our results indicate that S. babylonica protects pancreatic tissues against dexamethasone-induced damage by decreasing oxidative stress and its associated autophagy. Our study reveals a new mechanism for dexamethasone effects on pancreas and shows the potential therapeutic role of S. babylonica in mitigating dexamethasone adverse effects on pancreas and establishes the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Rehab A Hasan
- Department of Histology, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt
| |
Collapse
|
5
|
Tracing metabolic flux in vivo: basic model structures of tracer methodology. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1311-1322. [PMID: 36075950 PMCID: PMC9534847 DOI: 10.1038/s12276-022-00814-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
Molecules in living organisms are in a constant state of turnover at varying rates, i.e., synthesis, breakdown, oxidation, and/or conversion to different compounds. Despite the dynamic nature of biomolecules, metabolic research has focused heavily on static, snapshot information such as the abundances of mRNA, protein, and metabolites and/or (in)activation of molecular signaling, often leading to erroneous conclusions regarding metabolic status. Over the past century, stable, non-radioactive isotope tracers have been widely used to provide critical information on the dynamics of specific biomolecules (metabolites and polymers including lipids, proteins, and DNA), in studies in vitro in cells as well as in vivo in both animals and humans. In this review, we discuss (1) the historical background of the use of stable isotope tracer methodology in metabolic research; (2) the importance of obtaining kinetic information for a better understanding of metabolism; and (3) the basic principles and model structures of stable isotope tracer methodology using 13C-, 15N-, or 2H-labeled tracers. Tagging biomolecules with stable isotopes of specific atoms can reveal details of the molecular inter-conversions of metabolism. The masses of the tracer isotopes used are greater than those of the more common atomic forms. This allows their movement through different metabolic pathways to be detected using mass spectrometry and modeling. Il-Young Kim at Gachon University School of Medicine in South Korea and colleagues focus their review on the use of stable, non-radioactive isotope tracers, especially, of carbon, nitrogen, and hydrogen, to study metabolism in live humans and other animals. They cover the basic model structures of tracer methodology that serve as the fundamental basis for various tracer methods available and the most recent applications. Their procedure is especially useful for monitoring the rates of metabolic inter-conversions, which can reveal aspects of health and disease.
Collapse
|
6
|
Jang J, Koh JH, Kim Y, Kim HJ, Park S, Chang Y, Jung J, Wolfe RR, Kim IY. Balanced Free Essential Amino Acids and Resistance Exercise Training Synergistically Improve Dexamethasone-Induced Impairments in Muscle Strength, Endurance, and Insulin Sensitivity in Mice. Int J Mol Sci 2022; 23:ijms23179735. [PMID: 36077132 PMCID: PMC9456044 DOI: 10.3390/ijms23179735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET. All mice except the control were subjected to DEX treatment. We evaluated the cumulative rate of myofibrillar protein synthesis (MPS) using 2H2O labeling and mass spectrometry. Neuromuscular junction (NMJ) stability, mitochondrial contents, and molecular signaling were demonstrated in skeletal muscle. Insulin sensitivity and glucose metabolism using 13C6-glucose tracing during oral glucose tolerance tests were analyzed. We found that EAA and RET synergistically improve muscle mass and/or strength, and endurance capacity, as well as insulin sensitivity, and glucose metabolism in DEX-treated muscle. These improvements are accomplished, in part, through improvements in myofibrillar protein synthesis, NMJ, fiber type preservation, and/or mitochondrial biogenesis. In conclusion, free EAA supplementation, particularly when combined with RET, can serve as an effective means that counteracts the adverse effects on muscle of DEX that are found frequently in clinical settings.
Collapse
Affiliation(s)
- Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hee-Joo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Sanghee Park
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Robert R. Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
7
|
Prevention of Loss of Muscle Mass and Function in Older Adults during COVID-19 Lockdown: Potential Role of Dietary Essential Amino Acids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138090. [PMID: 35805748 PMCID: PMC9265941 DOI: 10.3390/ijerph19138090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
As the COVID-19 pandemic became a global emergency, social distancing, quarantine, and limitations in outdoor activities have resulted in an environment of enforced physical inactivity (EPI). A prolonged period of EPI in older individuals accelerates the deterioration of skeletal muscle health, including loss of muscle mass and function, commonly referred to as sarcopenia. Sarcopenia is associated with an increased likelihood of the progression of diabetes, obesity, and/or depression. Well-known approaches to mitigate the symptoms of sarcopenia include participation in resistance exercise training and/or intake of balanced essential amino acids (EAAs) and high-quality (i.e., containing high EEAs) protein. As the pandemic situation discourages physical exercise, nutritional approaches, especially dietary EAA intake, could be a good alternative for counteracting against EPI-promoted loss of muscle mass and function. Therefore, in the present review, we cover (1) the impact of EPI-induced muscle loss and function on health, (2) the therapeutic potential of dietary EAAs for muscle health (e.g., muscle mass and function) in the EPI condition in comparison with protein sources, and finally (3) practical guidelines of dietary EAA intake for optimal anabolic response in EPI.
Collapse
|