1
|
Phomvisith O, Muroya S, Otomaru K, Oshima K, Oshima I, Nishino D, Haginouchi T, Gotoh T. Maternal Undernutrition Affects Fetal Thymus DNA Methylation, Gene Expression, and, Thereby, Metabolism and Immunopoiesis in Wagyu (Japanese Black) Cattle. Int J Mol Sci 2024; 25:9242. [PMID: 39273192 PMCID: PMC11395129 DOI: 10.3390/ijms25179242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to determine the effects of maternal nutrient restriction (MNR) on the DNA methylation and gene expression patterns associated with metabolism and immunopoiesis in the thymuses of fetal Wagyu cattle. Pregnant cows were allocated to two groups: a low-nutrition (LN; 60% nutritional requirement; n = 5) and a high-nutrition (HN; 120% nutritional requirement, n = 6) group, until 8.5 months of gestation. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing were used to analyze DNA methylation and gene expression, while capillary electrophoresis-Fourier transform mass spectrometry assessed the metabolome. WGBS identified 4566 hypomethylated and 4303 hypermethylated genes in the LN group, with the intergenic regions most frequently being methylated. Pathway analysis linked hypoDMGs to Ras signaling, while hyperDMGs were associated with Hippo signaling. RNA sequencing found 94 differentially expressed genes (66 upregulated, 28 downregulated) in the LN group. The upregulated genes were tied to metabolic pathways and oxidative phosphorylation; the downregulated genes were linked to natural killer cell cytotoxicity. Key overlapping genes (GRIA1, CACNA1D, SCL25A4) were involved in cAMP signaling. The metabolomic analysis indicated an altered amino acid metabolism in the MNR fetuses. These findings suggest that MNR affects DNA methylation, gene expression, and the amino acid metabolism, impacting immune system regulation during fetal thymus development in Wagyu cattle.
Collapse
Affiliation(s)
- Ouanh Phomvisith
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Susumu Muroya
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Daichi Nishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Taketo Haginouchi
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
2
|
Adekunbi DA, Yang B, Huber HF, Riojas AM, Moody AJ, Li C, Olivier M, Nathanielsz PW, Clarke GD, Cox LA, Salmon AB. Perinatal maternal undernutrition in baboons modulates hepatic mitochondrial function but not metabolites in aging offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592246. [PMID: 38746316 PMCID: PMC11092655 DOI: 10.1101/2024.05.02.592246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H2O2) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H2O2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
| | - Bowen Yang
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Angelica M Riojas
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Alexander J Moody
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffery D Clarke
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
3
|
Safain KS, Crouse MS, Syring JG, Entzie YL, King LE, Hirchert MR, Ward AK, Reynolds LP, Borowicz PP, Dahlen CR, Swanson KC, Caton JS. One-carbon metabolites supplementation and nutrient restriction alter the fetal liver metabolomic profile during early gestation in beef heifers. J Anim Sci 2024; 102:skae258. [PMID: 39234988 PMCID: PMC11465369 DOI: 10.1093/jas/skae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2 × 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CON - OCM, CON + OCM, RES - OCM, and RES + OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (n = 54) being significantly influenced by the main effect of gain (P ≤ 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (P ≤ 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (P ≤ 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.
Collapse
Affiliation(s)
- Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Jessica G Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Yssi L Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Layla E King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA
| | - Mara R Hirchert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C Swanson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
4
|
Muroya S, Otomaru K, Oshima K, Oshima I, Ojima K, Gotoh T. DNA Methylation of Genes Participating in Hepatic Metabolisms and Function in Fetal Calf Liver Is Altered by Maternal Undernutrition during Gestation. Int J Mol Sci 2023; 24:10682. [PMID: 37445858 DOI: 10.3390/ijms241310682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to elucidate the effects of maternal undernutrition (MUN) on epigenetic modification of hepatic genes in Japanese Black fetal calves during gestation. Using a previously established experimental design feeding the dams with 60% (LN) or 120% (HN) of their global nutritional requirements during the 8.5-month gestational period, DNA methylation in the fetal liver was analyzed with reduced representation bisulfite sequencing (RRBS). The promoters and gene bodies in the LN fetuses were hypomethylated compared to HN fetuses. Pathway analysis showed that the genes with DMR in the exon/intron in the LN group were associated with pathways involved in Cushing syndrome, gastric acid secretion, and aldosterone synthesis and secretion. Promoter hypomethylation in the LN group was frequently observed in genes participating in various signaling pathways (thyroid hormone, Ras/Rap1, PIK3-Akt, cAMP), fatty acid metabolism, and cholesterol metabolism. The promoter hypomethylated genes ALPL and GNAS were upregulated in the LN group, whereas the promoter hypermethylated genes GRB10 and POR were downregulated. The intron/exon hypomethylated genes IGF2, IGF2R, ACAD8, TAT, RARB, PINK1, and SOAT2 were downregulated, whereas the hypermethylated genes IGF2BP2, NOS3, and NR2F1 were upregulated. Collectively, MUN alters the promoter and gene body methylation of genes associated with hepatic metabolisms (energy, cholesterol, mitochondria) and function, suggesting an impact of altered gene methylation on the dysregulation of gene expression in the fetal liver.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
5
|
Tillquist NM, Reed SA, Kawaida MY, Reiter AS, Smith BI, Jang H, Lee JY, Lee EC, Zinn SA, Govoni KE. Restricted- and over-feeding during gestation decreases growth of offspring throughout maturity. Transl Anim Sci 2023; 7:txad061. [PMID: 37334247 PMCID: PMC10276548 DOI: 10.1093/tas/txad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
To determine the effects of poor maternal nutrition on the growth and metabolism of offspring into maturity, multiparous Dorset ewes pregnant with twins (n = 46) were fed to either 100% (control; n = 13), 60% (restricted; n = 17), or 140% (over; n = 16) of National Research Council requirements from day 30 ± 0.02 of gestation until parturition. Offspring of these ewes are referred to as CON (n = 10 ewes; 12 rams), RES (n = 13 ewes; 21 rams), or OVER (n = 16 ewes; 13 rams), respectively. Lamb body weights (BW) and blood samples were collected weekly from birth (day 0) to day 28 and then every 14 d until day 252. Intravenous glucose tolerance test (infusion of 0.25 g dextrose/kg BW) was performed at day 133 ± 0.25. At day 167 ± 1.42, individual daily intake was recorded over a 77 d feeding period to determine residual feed intake (RFI). Rams were euthanized at day 282 ± 1.82 and body morphometrics, loin eye area (LEA), back fat thickness, and organ weights were collected. The right leg was collected from rams at necropsy and dual-energy x-ray absorptiometry was used to determine bone mineral density (BMD) and length. Averaged from day 0 until day 252, RES and OVER offspring weighed 10.8% and 6.8% less than CON offspring, respectively (P ≤ 0.02). When adjusted for BW, liver and testes weights tended to be increased and decreased, respectively, in RES rams compared with CON rams (P ≤ 0.08). Additionally, RES BMD and bone length were less than CON rams (P ≤ 0.06). Treatment did not influence muscle mass, LEA, or adipose deposition (P ≥ 0.41). Rams (-0.17) were more feed efficient than ewes (0.23; P < 0.01); however, no effect of maternal diet was observed (P ≥ 0.57). At 2 min post glucose infusion, glucose concentrations in OVER offspring were greater than CON and RES offspring (P = 0.04). Concentrations of insulin in CON rams tended to be greater than OVER and RES ewes at 5 min (P ≤ 0.07). No differences were detected in insulin:glucose or area under the curve (AUC) for glucose or insulin (P ≤ 0.29). Maternal diet did not impact offspring triglycerides or cholesterol (P ≤ 0.35). Pre-weaning leptin tended to be 70% greater in OVER offspring than CON (P ≤ 0.07). These data indicate that poor maternal nutrition impairs offspring growth throughout maturity but does not affect RFI. Changes in metabolic factors and glucose tolerance are minimal, highlighting the need to investigate other mechanisms that may contribute to negative impacts of poor maternal diet.
Collapse
Affiliation(s)
- Nicole M Tillquist
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Mia Y Kawaida
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Amanda S Reiter
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Brandon I Smith
- Present address: Amador Bioscience, Ann Arbor, MI, 48108, USA
| | - Hyung Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Elaine C Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
6
|
The Exploration of Fetal Growth Restriction Based on Metabolomics: A Systematic Review. Metabolites 2022; 12:metabo12090860. [PMID: 36144264 PMCID: PMC9501562 DOI: 10.3390/metabo12090860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and a significant cause of neonatal morbidity and mortality. The adverse effects of FGR can last throughout the entire lifespan and increase the risks of various diseases in adulthood. However, the etiology and pathogenesis of FGR remain unclear. This study comprehensively reviewed metabolomics studies related with FGR in pregnancy to identify potential metabolic biomarkers and pathways. Relevant articles were searched through two online databases (PubMed and Web of Science) from January 2000 to July 2022. The reported metabolites were systematically compared. Pathway analysis was conducted through the online MetaboAnalyst 5.0 software. For humans, a total of 10 neonatal and 14 maternal studies were included in this review. Several amino acids, such as alanine, valine, and isoleucine, were high frequency metabolites in both neonatal and maternal studies. Meanwhile, several pathways were suggested to be involved in the development of FGR, such as arginine biosynthesis, arginine, and proline metabolism, glyoxylate and dicarboxylate metabolism, and alanine, aspartate, and glutamate metabolism. In addition, we also included 8 animal model studies, in which three frequently reported metabolites (glutamine, phenylalanine, and proline) were also present in human studies. In general, this study summarized several metabolites and metabolic pathways which may help us to better understand the underlying metabolic mechanisms of FGR.
Collapse
|
7
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
8
|
Schalch Junior FJ, Polizel GHG, Cançado FACQ, Fernandes AC, Mortari I, Pires PRL, Fukumasu H, Santana MHDA, Saran Netto A. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022; 12:347. [PMID: 35448533 PMCID: PMC9028846 DOI: 10.3390/metabo12040347] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of different prenatal nutrition on the plasma metabolome of Nellore dams and their offspring. For that purpose, three nutritional treatments were used in 126 cows during pregnancy: NP—(control) only mineral supplementation; PP—protein-energy supplementation in the final third; and FP—protein-energy supplementation during the entire pregnancy. Targeted metabolomics were analyzed in plasma at the beginning of pregnancy and in pre-delivery of cows (n = 27) as well as in calves (n = 27, 30 ± 9.6 days of age). Data were analyzed by the analysis of variance, partial least squares discriminant analysis, and the principal component analysis (PCA). The PCA showed a clear clustering in the periods investigated only in cows (early gestation and pre-delivery). We found significant metabolites in both supervised analyses (p < 0.05 and VIP score > 1) for cows (Taurine, Glutamic acid, Histidine, and PC aa C42:2) and for calves (Carnosine, Alanine, and PC aa C26:0). The enrichment analysis revealed biological processes (p < 0.1) common among cows and calves (histidine metabolism and beta-alanine metabolism), which may be indicative of transgenerational epigenetic changes. In general, fetal programming affected mainly the metabolism of amino acids.
Collapse
Affiliation(s)
- Fernando José Schalch Junior
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Fernando Augusto Correia Queiroz Cançado
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Isabela Mortari
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Pedro Ratto Lisboa Pires
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (P.R.L.P.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (P.R.L.P.); (H.F.)
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Arlindo Saran Netto
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| |
Collapse
|