1
|
Charras Q, Rey P, Guillemain D, Dourguin F, Laganier H, Peschoux S, Molinié R, Ismaël M, Caffarri S, Rayon C, Jungas C. An efficient protocol for extracting thylakoid membranes and total leaf proteins from Posidonia oceanica and other polyphenol-rich plants. PLANT METHODS 2024; 20:38. [PMID: 38468328 DOI: 10.1186/s13007-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The extraction of thylakoids is an essential step in studying the structure of photosynthetic complexes and several other aspects of the photosynthetic process in plants. Conventional protocols have been developed for selected land plants grown in controlled conditions. Plants accumulate defensive chemical compounds such as polyphenols to cope with environmental stresses. When the polyphenol levels are high, their oxidation and cross-linking properties prevent thylakoid extraction. RESULTS In this study, we developed a method to counteract the hindering effects of polyphenols by modifying the grinding buffer with the addition of both vitamin C (VitC) and polyethylene glycol (PEG4000). This protocol was first applied to the marine plant Posidonia oceanica and then extended to other plants synthesizing substantial amounts of polyphenols, such as Quercus pubescens (oak) and Vitis vinifera (grapevine). Native gel analysis showed that photosynthetic complexes (PSII, PSI, and LHCII) can be extracted from purified membranes and fractionated comparably to those extracted from the model plant Arabidopsis thaliana. Moreover, total protein extraction from frozen P. oceanica leaves was also efficiently carried out using a denaturing buffer containing PEG and VitC. CONCLUSIONS Our work shows that the use of PEG and VitC significantly improves the isolation of native thylakoids, native photosynthetic complexes, and total proteins from plants containing high amounts of polyphenols and thus enables studies on photosynthesis in various plant species grown in natural conditions.
Collapse
Affiliation(s)
- Quentin Charras
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, KTH University, Stockholm, Sweden
| | - Pascal Rey
- CEA, CNRS, BIAM, P&E Team, Aix-Marseille University, Saint Paul-Lez-Durance, France
| | - Dorian Guillemain
- CNRS, IRD, IRSTEA, OSU Institut Pythéas, Aix-Marseille University, Marseille, France
| | - Fabian Dourguin
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Hugo Laganier
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Sacha Peschoux
- UFR Informatique, mathématiques et mathématiques appliquées (IM2AG), Université Grenoble Alpes, Saint Martin d'Heres, France
| | - Roland Molinié
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Marwa Ismaël
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Stefano Caffarri
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Catherine Rayon
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Colette Jungas
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France.
| |
Collapse
|
2
|
Lewis DC, van der Zwan T, Richards A, Little H, Coaker GL, Bostock RM. The Oomycete Microbe-Associated Molecular Pattern, Arachidonic Acid, and an Ascophyllum nodosum-Derived Plant Biostimulant Induce Defense Metabolome Remodeling in Tomato. PHYTOPATHOLOGY 2023; 113:1084-1092. [PMID: 36598344 PMCID: PMC10318118 DOI: 10.1094/phyto-10-22-0368-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, Ascophylum nodosum extract (ANE) from the brown seaweed A. nodosum, a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones. In this work, untargeted metabolomic analysis via liquid chromatography-mass spectrometry was conducted to investigate the local and systemic metabolome-wide remodeling events elicited by AA and ANE root treatment in tomatoes. Our study demonstrated AA and ANE's capacity to locally and systemically alter the metabolome of tomatoes with enrichment of chemical classes and accumulation of metabolites associated with defense-related secondary metabolism. AA- and ANE-root-treated plants showed enrichment of fatty acyl-glycosides and strong modulation of hydroxycinnamic acids and derivatives. Identification of specific metabolites whose accumulation was affected by AA and ANE treatment revealed shared metabolic changes related to ligno-suberin biosynthesis and the synthesis of phenolic compounds. This study highlights the extensive local and systemic metabolic changes in tomatoes induced by treatment with a fatty acid MAMP and a seaweed-derived plant biostimulant with implications for induced resistance and crop improvement.
Collapse
Affiliation(s)
- Domonique C. Lewis
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Timo van der Zwan
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Andrew Richards
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Holly Little
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Richard M. Bostock
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Offor BC, Mhlongo MI, Dubery IA, Piater LA. Plasma Membrane-Associated Proteins Identified in Arabidopsis Wild Type, lbr2-2 and bak1-4 Mutants Treated with LPSs from Pseudomonas syringae and Xanthomonas campestris. MEMBRANES 2022; 12:membranes12060606. [PMID: 35736313 PMCID: PMC9230897 DOI: 10.3390/membranes12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Plants recognise bacterial microbe-associated molecular patterns (MAMPs) from the environment via plasma membrane (PM)-localised pattern recognition receptor(s) (PRRs). Lipopolysaccharides (LPSs) are known as MAMPs from gram-negative bacteria that are most likely recognised by PRRs and trigger defence responses in plants. The Arabidopsis PRR(s) and/or co-receptor(s) complex for LPS and the associated defence signalling remains elusive. As such, proteomic identification of LPS receptors and/or co-receptor complexes will help to elucidate the molecular mechanisms that underly LPS perception and defence signalling in plants. The Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related-2 (LBR2) have been shown to recognise LPS and trigger defence responses while brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) acts as a co-receptor for several PRRs. In this study, Arabidopsis wild type (WT) and T-DNA knock out mutants (lbr2-2 and bak1-4) were treated with LPS chemotypes from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc) over a 24 h period. The PM-associated protein fractions were separated by liquid chromatography and analysed by tandem mass spectrometry (LC-MS/MS) followed by data analysis using ByonicTM software. Using Gene Ontology (GO) for molecular function and biological processes, significant LPS-responsive proteins were grouped according to defence and stress response, perception and signalling, membrane transport and trafficking, metabolic processes and others. Venn diagrams demarcated the MAMP-responsive proteins that were common and distinct to the WT and mutant lines following treatment with the two LPS chemotypes, suggesting contributions from differential LPS sub-structural moieties and involvement of LBR2 and BAK1 in the LPS-induced MAMP-triggered immunity (MTI). Moreover, the identification of RLKs and RLPs that participate in other bacterial and fungal MAMP signalling proposes the involvement of more than one receptor and/or co-receptor for LPS perception as well as signalling in Arabidopsis defence responses.
Collapse
|