1
|
Tobaruela-Resola AL, Riezu-Boj JI, Milagro FI, Mogna-Pelaez P, Herrero JI, Elorz M, Benito-Boillos A, Tur JA, Martínez JA, Abete I, Zulet MÁ. Circulating microRNA panels in subjects with metabolic dysfunction-associated steatotic liver disease after following a 2-year dietary intervention. J Endocrinol Invest 2024:10.1007/s40618-024-02499-9. [PMID: 39549213 DOI: 10.1007/s40618-024-02499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) affects one-third of the global population. Despite its high prevalence, there is a lack of minimally non-invasive diagnostic methods to assess this condition. This study explores the potential of circulating microRNAs (miRNAs) as diagnostic biomarkers for MASLD after a 2-year nutritional intervention. METHODS Fifty-five subjects with steatosis (MASLD group) from the Fatty Liver in Obesity (FLiO) study (NCT03183193) were analyzed at baseline and after 6, 12 and 24 months. Participants were classified into two groups: those who still had steatosis after the intervention (unhealthy group) and those in whom steatosis had disappeared (healthy group). Hepatic status was evaluated through magnetic resonance imaging (MRI), ultrasonography, elastography and serum transaminases. Circulating miRNA levels were measured by RT-PCR. RESULTS The dietary intervention was able to modulate the expression of circulating miRNAs after 6, 12, and 24 months. Logistic regression analyses revealed that the most effective panels for diagnosing whether MASLD has disappeared after the nutritional intervention included miR15b-3p, miR126-5p and BMI (AUC 0.68) at 6 months, miR29b-3p, miR122-5p, miR151a-3p and BMI (AUC 0.85) at 12 months and miR21-5p, miR151a-3p and BMI at 24 months (AUC 0.85). CONCLUSIONS Circulating miRNAs were useful in predicting MASLD in subjects with overweight or obesity after following a weight-loss oriented nutritional intervention. These findings highlight the potential role of miRNAs in diagnosing MASLD and underscore the importance of precision nutrition in managing and determining MASLD. CLINICAL TRIAL REGISTRATION Trial registration number: NCT03183193 (www. CLINICALTRIALS gov).
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Paola Mogna-Pelaez
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122, Palma, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Ángeles Zulet
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Tobaruela-Resola AL, Milagro FI, Elorz M, Benito-Boillos A, Herrero JI, Mogna-Peláez P, Tur JA, Martínez JA, Abete I, Zulet MÁ. Circulating miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p as potential predictive biomarkers for Metabolic Dysfunction-Associated Steatotic Liver Disease assessment. J Physiol Biochem 2024:10.1007/s13105-024-01037-8. [PMID: 39138826 DOI: 10.1007/s13105-024-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a worldwide leading cause of liver-related associated morbidities and mortality. Currently, there is a lack of reliable non-invasive biomarkers for an accurate of MASLD. Hence, this study aimed to evidence the functional role of miRNAs as potential biomarkers for MASLD assessment. Data from 55 participants with steatosis (MASLD group) and 45 without steatosis (control group) from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. Anthropometrics and body composition, biochemical and inflammatory markers, lifestyle factors and liver status were evaluated. Circulating miRNA levels were measured by RT-PCR. Circulating levels of miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p were significantly increased in the MASLD group. These miRNAs were significantly associated with steatosis, liver stiffness and hepatic fat content. Logistic regression analyses revealed that miR-151a-3p or miR-21-5p in combination with leptin showed a significant diagnostic accuracy for liver stiffness obtaining an area under the curve (AUC) of 0.76 as well as miR-151a-3p in combination with glucose for hepatic fat content an AUC of 0.81. The best predictor value for steatosis was obtained by combining miR-126-5p with leptin, presenting an AUC of 0.95. Circulating miRNAs could be used as a non-invasive biomarkers for evaluating steatosis, liver stiffness and hepatic fat content, which are crucial in determining MASLD. CLINICAL TRIAL REGISTRATION: • Trial registration number: NCT03183193 ( www.clinicaltrials.gov ). • Date of registration: 12/06/2017.
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group On Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Spain
| | - J Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - M Ángeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Ramírez-Solano MA, Córdova EJ, Orozco L, Tejero ME. Plasma MicroRNAs Related to Metabolic Syndrome in Mexican Women. Lifestyle Genom 2023; 16:165-176. [PMID: 37708875 DOI: 10.1159/000534041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION The metabolic syndrome (MetS) is a cluster of abnormalities related to cardiovascular disease (CVD). Circulating miRNAs (c-miRNAs) are non-coding RNAs associated with different phenotypes, some of them integrating the MetS. The aim of the study was to compare the c-miRNAs profile in plasma between women with MetS and controls and explore their possible association with dysregulation of metabolic pathways. METHODS The study was conducted in two phases. At the screening phase, miRNA composition in fasting plasma was compared between 8 participants with MetS and 10 healthy controls, using microarray technology. The validation phase included the analysis by qRT-PCR of 10 selected c-miRNAs in an independent sample (n = 29). RESULTS We found 21 c-miRNAs differentially expressed between cases and controls. The concentration in plasma of the c-miRNAs hsa-miR-1260a, hsa-miR-4514, and hsa-miR-4687-5p were also correlated with risk factors for CVD. Differences of hsa-miR-1260a between cases and controls were validated using qRT-PCR (fold-change = 7.0; p = 0.003). CONCLUSION The signature of plasma c-miRNAs differed between women with MetS and controls. The identified miRNAs regulate pathways related to the MetS such as insulin resistance and adipokine activity. The role of c-miR-1260a in the MetS remains to be elucidated.
Collapse
Affiliation(s)
- Marisol Adelina Ramírez-Solano
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Bioquímica Clínica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emilio J Córdova
- Consorcio Oncogenómica y Enfermedades Óseas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Complejas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - María Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
4
|
González‐López P, Álvarez‐Villarreal M, Ruiz‐Simón R, López‐Pastor AR, de Ceniga MV, Esparza L, Martín‐Ventura JL, Escribano Ó, Gómez‐Hernández A. Role of miR-15a-5p and miR-199a-3p in the inflammatory pathway regulated by NF-κB in experimental and human atherosclerosis. Clin Transl Med 2023; 13:e1363. [PMID: 37605307 PMCID: PMC10442475 DOI: 10.1002/ctm2.1363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs. METHODS By RT-qPCR, we analysed miR-9-5p, miR-15a-5p, miR-16-5p and miR-199a-3p levels in aorta from apolipoprotein knockout (ApoE-/- ) mice, an experimental model of hyperlipidemia-induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs. RESULTS Our results show that miR-15a-5p and miR-199a-3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF-κB), such as IKKα, IKKβ and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR-15a-5p or miR-199a-3p decreased IKKα, IKKβ and p65 protein levels as well as NF-κB activation. On the other hand, miR-15a-5p and miR-199a-3p overexpression reduced ox-LDL uptake and the inflammation regulated by NF-κB in VSMCs. Moreover, although miR-15a-5p and miR-199a-3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR-15a-5p, the area under the curve was 0.8951 with a p value of .0028. CONCLUSIONS Our results suggest that the decrease of miR-199a-3p and miR-15a-5p in vascular samples from human and experimental atherosclerosis could be involved in the NF-κB activation pathway, as well as in ox-LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR-15a-5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.
Collapse
Affiliation(s)
- Paula González‐López
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Marta Álvarez‐Villarreal
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Rubén Ruiz‐Simón
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Andrea R. López‐Pastor
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | - Leticia Esparza
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | | | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Almudena Gómez‐Hernández
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| |
Collapse
|
5
|
Mir FA, Mall R, Ullah E, Iskandarani A, Cyprian F, Samra TA, Alkasem M, Abdalhakam I, Farooq F, Taheri S, Abou-Samra AB. An integrated multi-omic approach demonstrates distinct molecular signatures between human obesity with and without metabolic complications: a case-control study. J Transl Med 2023; 21:229. [PMID: 36991398 PMCID: PMC10053148 DOI: 10.1186/s12967-023-04074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES To examine the hypothesis that obesity complicated by the metabolic syndrome, compared to uncomplicated obesity, has distinct molecular signatures and metabolic pathways. METHODS We analyzed a cohort of 39 participants with obesity that included 21 with metabolic syndrome, age-matched to 18 without metabolic complications. We measured in whole blood samples 754 human microRNAs (miRNAs), 704 metabolites using unbiased mass spectrometry metabolomics, and 25,682 transcripts, which include both protein coding genes (PCGs) as well as non-coding transcripts. We then identified differentially expressed miRNAs, PCGs, and metabolites and integrated them using databases such as mirDIP (mapping between miRNA-PCG network), Human Metabolome Database (mapping between metabolite-PCG network) and tools like MetaboAnalyst (mapping between metabolite-metabolic pathway network) to determine dysregulated metabolic pathways in obesity with metabolic complications. RESULTS We identified 8 significantly enriched metabolic pathways comprising 8 metabolites, 25 protein coding genes and 9 microRNAs which are each differentially expressed between the subjects with obesity and those with obesity and metabolic syndrome. By performing unsupervised hierarchical clustering on the enrichment matrix of the 8 metabolic pathways, we could approximately segregate the uncomplicated obesity strata from that of obesity with metabolic syndrome. CONCLUSIONS The data suggest that at least 8 metabolic pathways, along with their various dysregulated elements, identified via our integrative bioinformatics pipeline, can potentially differentiate those with obesity from those with obesity and metabolic complications.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, USA.
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.
| | - Ehsan Ullah
- Qatar Computational Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar.
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Tareq A Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Faisal Farooq
- Qatar Computational Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Shahrad Taheri
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
- National Obesity Treatment Center, Hamad Medical Corporation, Doha, Qatar
- Weil Cornell Medicine - Qatar, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
- National Obesity Treatment Center, Hamad Medical Corporation, Doha, Qatar
- Weil Cornell Medicine - Qatar, Doha, Qatar
| |
Collapse
|
6
|
Circulating microRNAs Showed Specific Responses according to Metabolic Syndrome Components and Sex of Adults from a Population-Based Study. Metabolites 2022; 13:metabo13010002. [PMID: 36676927 PMCID: PMC9861536 DOI: 10.3390/metabo13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate several metabolic pathways and are potential biomarkers for early risk prediction of metabolic syndrome (MetS). Our aim was to evaluate the levels of 21 miRNAs in plasma according to MetS components and sex in adults. We employed a cross-sectional study of 192 adults aged 20 to 59 years old from the 2015 Health Survey of São Paulo with Focus in Nutrition. Data showed reduced levels of miR-16 and miR-363 in women with MetS; however, men with one or more risk factors showed higher levels of miR-let-7c and miR-30a. Individuals with raised waist circumference showed higher levels of miR-let-7c, miR-122, miR-30a, miR-146a, miR-15a, miR-30d and miR-222. Individuals with raised blood pressure had higher miR-30a, miR-122 and miR-30a levels. Plasma levels of four miRNAs (miR-16, miR-363, miR-375 and miR-486) were lower in individuals with low HDL-cholesterol concentrations. In addition, plasma levels of five miRNAs (miR-122, miR-139, miR-let-7c, miR-126 and miR-30a) were increased in individuals with high fasting plasma glucose and/or insulin resistance. Our results suggest that the pattern of miRNA levels in plasma may be a useful early biomarker of cardiometabolic components of MetS and highlight the sex differences in the plasma levels of miRNAs in individuals with MetS.
Collapse
|