1
|
Yang L, Liu D, Jiang S, Li H, Chen L, Wu Y, Essien AE, Opoku M, Naranmandakh S, Liu S, Ru Q, Li Y. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed Pharmacother 2024; 177:116917. [PMID: 38908209 DOI: 10.1016/j.biopha.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024] Open
Abstract
Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.
Collapse
Affiliation(s)
- Luning Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Anko Elijah Essien
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael Opoku
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - ShuGuang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
Orioli L, Samaras S, Sawadogo K, de Barsy M, Lause P, Deswysen Y, Navez B, Thissen JP, Loumaye A. Circulating myostatin as a biomarker of muscle mass and strength in individuals with cancer or obesity. Clin Nutr 2024; 43:1800-1808. [PMID: 38861892 DOI: 10.1016/j.clnu.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND & AIMS Our study aims to determine whether myostatin (MSTN) is associated with muscle mass and strength in individuals with cancer or obesity, as well as with cancer cachexia (CC) or sarcopenic obesity (SO). METHODS The ACTICA study included individuals with CC (n = 70) or without CC (NC, n = 73). The MYDIASECRET study included individuals with obesity evaluated before (T0) and 3 months (T3) after bariatric surgery (n = 62). Body composition was assessed using bioelectrical impedance analysis (BIA). Skeletal muscle mass (SMM) and appendicular SMM (ASMM) were calculated from Janssen's and Sergi's equations, respectively, and expressed as indexes (SMMI and ASMMI). Handgrip strength (HGS) was assessed using a Jamar hand-held dynamometer. MSTN plasma levels were measured using ELISA. Spearman's coefficient was used to correlate MSTN with muscle mass and strength. Receiver operating characteristic (ROC) curve analysis was performed to identify an optimal MSTN cutoff level for the prediction of CC or SO. RESULTS In the ACTICA study, muscle mass and strength were lower in CC individuals than in NC individuals (SMMI: 8.0 kg/m2vs 9.0 kg/m2, p = 0.004; ASMMI: 6.2 kg/m2vs 7.2 kg/m2, p < 0.001; HGS: 28 kg vs 38 kg, p < 0.001). MSTN was also lower in CC individuals than in NC individuals (1434 pg/mL vs 2149 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN (SMMI: R = 0.500, p < 0.001; ASMMI: R = 0.479, p < 0.001; HGS: R = 0.495, p < 0.001). ROC curve analysis showed a MSTN cutoff level of 1548 pg/mL (AUC 0.684, sensitivity 57%, specificity 75%, p < 0.001) for the prediction of CC. In the MYDIASECRET study, muscle mass and strength were reduced at T3 (SMMI: -8%, p < 0.001; ASMMI: -12%, p < 0.001; HGS: -6%, p = 0.005). MSTN was also reduced at T3 (1773 pg/mL vs 2582 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN at T0 and T3 (SMMI-T0: R = 0.388, p = 0.002; SMMI-T3: R = 0.435, p < 0.001; HGS-T0: R = 0.337, p = 0.007; HGS-T3: R = 0.313, p = 0.013). ROC curve analysis showed a MSTN cutoff level of 4225 pg/mL (AUC 0.835, sensitivity 98%, specificity 100%, p = 0.014) for the prediction of SO at T3. CONCLUSIONS MSTN is positively correlated with muscle mass and strength in individuals with cancer or obesity, suggesting its potential use as a biomarker of muscle mass and strength. The ROC curve analysis suggests the potential use of MSTN as a screening tool for CC and SO.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 55 Avenue Hippocrate, 1200 Brussels, Belgium; Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Sofia Samaras
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 55 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Kiswendsida Sawadogo
- Statistical Support Unit, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Marie de Barsy
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Pascale Lause
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 55 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Yannick Deswysen
- Department of Oeso-gastro-duodenal and Bariatric Surgery, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Benoit Navez
- Department of Oeso-gastro-duodenal and Bariatric Surgery, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 55 Avenue Hippocrate, 1200 Brussels, Belgium; Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Audrey Loumaye
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 55 Avenue Hippocrate, 1200 Brussels, Belgium; Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
3
|
Posey KL. Curcumin and Resveratrol: Nutraceuticals with so Much Potential for Pseudoachondroplasia and Other ER-Stress Conditions. Biomolecules 2024; 14:154. [PMID: 38397390 PMCID: PMC10886985 DOI: 10.3390/biom14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Natural products with health benefits, nutraceuticals, have shown considerable promise in many studies; however, this potential has yet to translate into widespread clinical use for any condition. Notably, many drugs currently on the market, including the first analgesic aspirin, are derived from plant extracts, emphasizing the historical significance of natural products in drug development. Curcumin and resveratrol, well-studied nutraceuticals, have excellent safety profiles with relatively mild side effects. Their long history of safe use and the natural origins of numerous drugs contrast with the unfavorable reputation associated with nutraceuticals. This review aims to explore the nutraceutical potential for treating pseudoachondroplasia, a rare dwarfing condition, by relating the mechanisms of action of curcumin and resveratrol to molecular pathology. Specifically, we will examine the curcumin and resveratrol mechanisms of action related to endoplasmic reticulum stress, inflammation, oxidative stress, cartilage health, and pain. Additionally, the barriers to the effective use of nutraceuticals will be discussed. These challenges include poor bioavailability, variations in content and purity that lead to inconsistent results in clinical trials, as well as prevailing perceptions among both the public and medical professionals. Addressing these hurdles is crucial to realizing the full therapeutic potential of nutraceuticals in the context of pseudoachondroplasia and other health conditions that might benefit.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
4
|
Rodziewicz-Flis EA, Kawa M, Kaczor JJ, Szaro-Truchan M, Flis DJ, Lombardi G, Ziemann E. Changes in selected exerkines concentration post folk-dance training are accompanied by glucose homeostasis and physical performance improvement in older adults. Sci Rep 2023; 13:8596. [PMID: 37237034 DOI: 10.1038/s41598-023-35583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The study aimed to evaluate the impact of selected exerkines concentration induced by folk-dance and balance training on physical performance, insulin resistance, and blood pressure in older adults. Participants (n = 41, age 71.3 ± 5.5 years) were randomly assigned to folk-dance (DG), balance training (BG), or control group (CG). The training was performed 3 times a week for 12 weeks. Physical performance tests-time up and go (TUG) and 6-min walk test (6MWT), blood pressure, insulin resistance, and selected proteins induced by exercise (exerkines) were assessed at baseline and post-exercise intervention. Significant improvement in TUG (p = 0.006 for BG and 0.039 for DG) and 6MWT tests (in BG and DG p = 0.001), reduction of systolic blood pressure (p = 0.001 for BG and 0.003 for DG), and diastolic blood pressure (for BG; p = 0.001) were registered post-intervention. These positive changes were accompanied by the drop in brain-derived neurotrophic factor (p = 0.002 for BG and 0.002 for DG), the increase of irisin concentration (p = 0.029 for BG and 0.022 for DG) in both groups, and DG the amelioration of insulin resistance indicators (HOMA-IR p = 0.023 and QUICKI p = 0.035). Folk-dance training significantly reduced the c-terminal agrin fragment (CAF; p = 0.024). Obtained data indicated that both training programs effectively improved physical performance and blood pressure, accompanied by changes in selected exerkines. Still, folk-dance had enhanced insulin sensitivity.
Collapse
Affiliation(s)
| | - Małgorzata Kawa
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdansk, Gdansk, Poland
| | - Marzena Szaro-Truchan
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Damian Józef Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland.
| |
Collapse
|
5
|
Santos HO, Forbes SC, Găman MA. Editorial: Functional foods, supplements, and dietary approaches in sports and clinical nutrition. Front Nutr 2023; 10:1203477. [PMID: 37215222 PMCID: PMC10196615 DOI: 10.3389/fnut.2023.1203477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Scott C. Forbes
- Faculty of Education, Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
6
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|