1
|
Jiang L, Hao Y, Li Q, Dai Z. Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. Int J Mol Sci 2024; 25:6694. [PMID: 38928404 PMCID: PMC11203607 DOI: 10.3390/ijms25126694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 μM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 μM cinnamic acid, indolelactic acid (ILA), and 10 μM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 μM IAld or 100 μM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 μM CGA or 100 μM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Qianjun Li
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| |
Collapse
|
2
|
Xie Z, Sutaria SR, Chen JY, Gao H, Conklin DJ, Keith RJ, Srivastava S, Lorkiewicz P, Bhatnagar A. Evaluation of urinary limonene metabolites as biomarkers of exposure to greenness. ENVIRONMENTAL RESEARCH 2024; 245:117991. [PMID: 38141921 PMCID: PMC10922478 DOI: 10.1016/j.envres.2023.117991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Exposure to plants is known to improve physical and mental health and living in areas of high vegetation is associated with better health. The addition of quantitative measures of greenness exposure at individual-level to other objective and subjective study measures will help establish cause-and-effect relationships between greenspaces and human health. Because limonene is one of the most abundant biogenic volatile organic compounds emitted by plants, we hypothesized that urinary metabolites of inhaled limonene can serve as biomarkers of exposure to greenness. To test our hypothesis, we analyzed urine samples collected from eight human volunteers after limonene inhalation or after greenness exposure using liquid chromatography-high resolution mass spectrometry-based profiling. Eighteen isomers of nine metabolites were detected in urine after limonene inhalation, and their kinetic parameters were estimated using nonlinear mixed effect models. Urinary levels of most abundant limonene metabolites were elevated after brief exposure to a forested area, and the ratio of urinary limonene metabolites provided evidence of recent exposure. The identities and structures of these metabolites were validated using stable isotope tracing and tandem mass spectral comparison. Together, these data suggest that urinary metabolites of limonene, especially uroterpenol glucuronide and dihydroperillic acid glucuronide, could be used as individualized biomarkers of greenness exposure.
Collapse
Affiliation(s)
- Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Saurin R Sutaria
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Jin Y Chen
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Hong Gao
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Department of Chemistry, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|