1
|
Popović I, Dončević L, Biba R, Košpić K, Barbalić M, Marinković M, Cindrić M. Advancements in Adenine Nucleotides Extraction and Quantification from a Single Drop of Human Blood. Molecules 2024; 29:5630. [PMID: 39683788 DOI: 10.3390/molecules29235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Adenine nucleotides (ANs)-adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP)-are essential for energy transfer and the supply of countless processes within cellular metabolism. Their concentrations can be expressed as adenylate energy charge (AEC), a measure of cellular metabolic energy that directly correlates with the homeostasis of the organism. AEC index has broad diagnostic potential, as reduced ATP levels are associated to various conditions, such as inflammatory diseases, metabolic disorders, and cancer. We introduce a novel methodology for rapid isolation, purification, and quantification of ANs from a single drop of capillary blood. Of all the stationary phases tested, activated carbon proved to be the most efficient for the purification of adenine nucleotides, using an automated micro-solid phase extraction (µ-SPE) platform. An optimized µ-SPE method, coupled with RP-HPLC and a run time of 30 min, provides a reliable analytical framework for adenine nucleotide analysis of diverse biological samples. AN concentrations measured in capillary blood samples were 1393.1 µM, 254.8 µM, and 76.9 µM for ATP, ADP, and AMP molecules aligning with values reported in the literature. Overall, this study presents a streamlined and precise approach for analyzing ANs from microliters of blood, offering promising applications in clinical diagnostics.
Collapse
Affiliation(s)
- Ivana Popović
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Renata Biba
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Karla Košpić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Barbalić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mija Marinković
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mario Cindrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Kilz LM, Zimmermann S, Marchand V, Bourguignon V, Sudol C, Brégeon D, Hamdane D, Motorin Y, Helm M. Differential redox sensitivity of tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:12784-12797. [PMID: 39460624 PMCID: PMC11602153 DOI: 10.1093/nar/gkae964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Various transfer RNA (tRNA) modifications have recently been shown to regulate stress-dependent gene expression by modulating messenger RNA translation. Among these modifications, dihydrouridine stands out for its increase of tRNA structural flexibility. However, whether and how dihydrouridine synthesis reacts to environmental stimuli is largely unknown. In this study, we manipulated the intracellular redox state of Escherichia coli using paraquat, revealing differential sensitivities of the three tRNA-dihydrouridine synthases towards oxidative stress. Using liquid chromatography-mass spectrometry quantification of dihydrouridine in various knockout strains, we validated the use of a specific RNA sequencing method, namely AlkAnilineSeq, for the precise mapping of dihydrouridines throughout E. coli tRNAs. We found DusA showing high activity, followed by DusB and DusC, whose activity was decreased under paraquat treatment. The relative sensitivity is most plausibly explained by a paraquat-dependent drop of NADPH availability. These findings are substantiated by in vitro kinetics, revealing DusA as the most active enzyme, followed by DusB, while DusC showed little activity, likely related to the efficacy of the redox reaction of the flavin coenzyme with NADPH. Overall, our study underscores the intricate interplay between redox dynamics and tRNA modification processes, revealing a new facet of the regulatory mechanisms influencing cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lea-Marie Kilz
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Simone Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Claudia Sudol
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Damien Brégeon
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
| | - Djemel Hamdane
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
3
|
Rane DV, García-Calvo L, Kristiansen KA, Bruheim P. Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites 2024; 14:607. [PMID: 39590843 PMCID: PMC11596675 DOI: 10.3390/metabo14110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Nicotinamide adenine dinucleotide (NAD+), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially cellular regulation and stress response mechanisms. The accurate quantification of these metabolites is challenging due to the interconversion between the redox forms. Methods: Our laboratory previously developed a zwitterionic hydrophilic interaction liquid chromatography (zic-HILIC)-tandem mass spectrometry method for the quantification of five essential pyridine nucleotides, including NAD+ derivatives and it's reduced forms, with 13C isotope dilution and matrix-matched calibration. In this study, we have improved the performance of the chromatographic method and expanded its scope to twelve analytes for a comprehensive view of NAD+ biosynthesis and utilization. The analytical method was validated and applied to investigate Escherichia coli BL21 under varying oxygen supplies including aerobic, microaerobic, and anaerobic conditions. Conclusions: The intracellular absolute metabolite concentrations ranged over four orders of magnitude with NAD+ as the highest abundant, while its precursors were much less abundant. The composition of the NADome at oxygen-limited conditions aligned more with that in the anaerobic conditions rather than in the aerobic phase. Overall, the NADome was quite homeostatic and E. coli rapidly, but in a minor way, adapted the metabolic activity to the challenging shift in the growth conditions and achieved redox balance. Our findings demonstrate that the zic-HILIC-MS/MS method is sensitive, accurate, robust, and high-throughput, providing valuable insights into NAD+ metabolism and the potential significance of these metabolites in various biological contexts.
Collapse
Affiliation(s)
| | | | | | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; (D.V.R.); (K.A.K.)
| |
Collapse
|
4
|
Bergum OET, Singleton AH, Røst LM, Bodein A, Scott-Boyer MP, Rye MB, Droit A, Bruheim P, Otterlei M. SOS genes are rapidly induced while translesion synthesis polymerase activity is temporally regulated. Front Microbiol 2024; 15:1373344. [PMID: 38596376 PMCID: PMC11002266 DOI: 10.3389/fmicb.2024.1373344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The DNA damage inducible SOS response in bacteria serves to increase survival of the species at the cost of mutagenesis. The SOS response first initiates error-free repair followed by error-prone repair. Here, we have employed a multi-omics approach to elucidate the temporal coordination of the SOS response. Escherichia coli was grown in batch cultivation in bioreactors to ensure highly controlled conditions, and a low dose of the antibiotic ciprofloxacin was used to activate the SOS response while avoiding extensive cell death. Our results show that expression of genes involved in error-free and error-prone repair were both induced shortly after DNA damage, thus, challenging the established perception that the expression of error-prone repair genes is delayed. By combining transcriptomics and a sub-proteomics approach termed signalomics, we found that the temporal segregation of error-free and error-prone repair is primarily regulated after transcription, supporting the current literature. Furthermore, the heterology index (i.e., the binding affinity of LexA to the SOS box) was correlated to the maximum increase in gene expression and not to the time of induction of SOS genes. Finally, quantification of metabolites revealed increasing pyrimidine pools as a late feature of the SOS response. Our results elucidate how the SOS response is coordinated, showing a rapid transcriptional response and temporal regulation of mutagenesis on the protein and metabolite levels.
Collapse
Affiliation(s)
| | - Amanda Holstad Singleton
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Antoine Bodein
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arnaud Droit
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
5
|
Ravanfar R, Sheng Y, Gray HB, Winkler JR. Tryptophan extends the life of cytochrome P450. Proc Natl Acad Sci U S A 2023; 120:e2317372120. [PMID: 38060561 PMCID: PMC10722969 DOI: 10.1073/pnas.2317372120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.
Collapse
Affiliation(s)
- Raheleh Ravanfar
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Yuling Sheng
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
6
|
Singleton AH, Bergum OET, Søgaard CK, Røst LM, Olsen CE, Blindheim FH, Ræder SB, Bjørnstad FA, Sundby E, Hoff BH, Bruheim P, Otterlei M. Activation of multiple stress responses in Staphylococcus aureus substantially lowers the minimal inhibitory concentration when combining two novel antibiotic drug candidates. Front Microbiol 2023; 14:1260120. [PMID: 37822747 PMCID: PMC10564113 DOI: 10.3389/fmicb.2023.1260120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
The past few decades have been plagued by an increasing number of infections caused by antibiotic resistant bacteria. To mitigate the rise in untreatable infections, we need new antibiotics with novel targets and drug combinations that reduce resistance development. The novel β-clamp targeting antimicrobial peptide BTP-001 was recently shown to have a strong additive effect in combination with the halogenated pyrrolopyrimidine JK-274. In this study, the molecular basis for this effect was examined by a comprehensive proteomic and metabolomic study of the individual and combined effects on Staphylococcus aureus. We found that JK-274 reduced activation of several TCA cycle enzymes, likely via increasing the cellular nitric oxide stress, and BTP-001 induced oxidative stress in addition to inhibiting replication, translation, and DNA repair processes. Analysis indicated that several proteins linked to stress were only activated in the combination and not in the single treatments. These results suggest that the strong additive effect is due to the activation of multiple stress responses that can only be triggered by the combined effect of the individual mechanisms. Importantly, the combination dose required to eradicate S. aureus was well tolerated and did not affect cell viability of immortalized human keratinocyte cells, suggesting a species-specific response. Our findings demonstrate the potential of JK-274 and BTP-001 as antibiotic drug candidates and warrant further studies.
Collapse
Affiliation(s)
- Amanda Holstad Singleton
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Cecilie Elisabeth Olsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Fredrik Heen Blindheim
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synnøve Brandt Ræder
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Frithjof A. Bjørnstad
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
García-Calvo L, Rane DV, Everson N, Humlebrekk ST, Mathiassen LF, Mæhlum AHM, Malmo J, Bruheim P. Central carbon metabolite profiling reveals vector-associated differences in the recombinant protein production host Escherichia coli BL21. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used host for recombinant protein production, both as an industrial expression platform and as a model system at laboratory scale. The recombinant protein production industry generates proteins with direct applications as biopharmaceuticals and in technological processes central to a plethora of fields. Despite the increasing economic significance of recombinant protein production, and the importance of E. coli as an expression platform and model organism, only few studies have focused on the central carbon metabolic landscape of E. coli during high-level recombinant protein production. In the present work, we applied four targeted CapIC- and LC-MS/MS methods, covering over 60 metabolites, to perform an in-depth metabolite profiling of the effects of high-level recombinant protein production in strains derived from E. coli BL21, carrying XylS/Pm vectors with different characteristics. The mass-spectrometric central carbon metabolite profiling was complemented with the study of growth kinetics and protein production in batch bioreactors. Our work shows the robustness in E. coli central carbon metabolism when introducing increased plasmid copy number, as well as the greater importance of induction of recombinant protein production as a metabolic challenge, especially when strong promoters are used.
Collapse
|
8
|
Thorfinnsdottir LB, Bø GH, Booth JA, Bruheim P. Survival of Escherichia coli after high-antibiotic stress is dependent on both the pregrown physiological state and incubation conditions. Front Microbiol 2023; 14:1149978. [PMID: 36970700 PMCID: PMC10036391 DOI: 10.3389/fmicb.2023.1149978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThe survival of bacterial cells exposed to antibiotics depends on the mode of action, the antibiotics concentration, and the duration of treatment. However, it also depends on the physiological state of the cells and the environmental conditions. In addition, bacterial cultures contain sub-populations that can survive high antibiotic concentrations, so-called persisters. Research on persisters is challenging due to multiple mechanisms for their formation and low fractions, down to and below one millionth of the total cell population. Here, we present an improved version of the persister assay used to enumerate the amount of persisters in a cell population.MethodsThe persister assay with high antibiotic stress exposure was performed at both growth supporting and non-supporting conditions. Escherichia coli cells were pregrown to various growth stages in shake flasks and bench-top bioreactors. In addition, the physiological state of E. coli before antibiotic treatment was determined by quantitative mass spectrometry-based metabolite profiling.ResultsSurvival of E. coli strongly depended on whether the persister assay medium supported growth or not. The results were also highly dependent on the type of antibiotic and pregrown physiological state of the cells. Therefore, applying the same conditions is critical for consistent and comparable results. No direct connection was observed between antibiotic efficacy to the metabolic state. This also includes the energetic state (i.e., the intracellular concentration of ATP and the adenylate energy charge), which has earlier been hypothesized to be decisive for persister formation.DiscussionThe study provides guides and suggestions for the design of future experimentation in the research fields of persisters and antibiotic tolerance.
Collapse
Affiliation(s)
| | - Gaute Hovde Bø
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - James Alexander Booth
- Department of Microbiology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Per Bruheim,
| |
Collapse
|