1
|
Zhuo G, Xiong F, Ping-Ping W, Chin-Ping T, Chun C. Ultrasonic collaborative pulse extraction of sugarcane polyphenol with good antiaging and α-glucosidase inhibitory activity. Int J Biol Macromol 2025; 297:139930. [PMID: 39824408 DOI: 10.1016/j.ijbiomac.2025.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Sugarcane, as one important and heavily planted industrial crop, is meaningful to develop its byproducts. In this paper, the ultrasonic collaborative pulse was beneficial for the yield improvement and good bioactivity protection. The sugarcane polyphenol extract (SPE) yield reached 2.42 ± 0.08 mg/g DW at the optimized conditions: pulse time of 60 s, pulse intensity of 2 kV/cm, ultrasonic time of 90 min, and ultrasonic power of 120 W. The SPE contained the total phenolic content of 6.01 ± 0.12 mg GAE/g extract and total flavonoids content of 7.15 ± 0.24 mg RE/g extract. The SPE was mainly composed of chlorogenic acid, schaftoside, hyperoside, quercitrin, and trans-3-hydroxycinnamic acid with 10.24 %, 14.92 %, 4.22 %, 12.05 %, 25.54 %, respectively. The SPE showed good radical scavenging activity with ORAC value of 134.57 μmol/g. The SPE could reduce the oxidative stress and extend the mean lifespan of nematodes by 7.19 % in vivo through increasing the activity of SOD and CAT to decrease the ROS level and MDA content. In addition, the SPE showed strong α-glucosidase inhibitory activity with IC50 of 0.53 mg/mL in a mixed inhibition type, which suggested that the SPE had good hypoglycemic potential.
Collapse
Affiliation(s)
- Gu Zhuo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Wang Ping-Ping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
2
|
Du C, Wang S, Shi X, Jing P, Wang H, Wang L. Identification of senescence related hub genes and potential therapeutic compounds for dilated cardiomyopathy via comprehensive transcriptome analysis. Comput Biol Med 2024; 179:108901. [PMID: 39029429 DOI: 10.1016/j.compbiomed.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a common cause of heart failure. However, the role of cellular senescence in DCM has not been fully elucidated. Here, we aimed to investigate senescence in DCM, identify senescence related characteristic genes, and explore the potential small molecule compounds for DCM treatment. METHODS DCM-associated datasets and senescence-related genes were respectively obtained from Gene Expression Omnibus (GEO) database and CellAge database. The characteristic genes were identified through methods including weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest. The expression of characteristic genes was verified in the mouse DCM model. Moreover, the CIBERSORT algorithm was applied to analyze immune characteristics of DCM. Finally, several therapeutic compounds were predicted by CMap analysis, and the potential mechanism of chlorogenic acid (CGA) was investigated by molecular docking and molecular dynamics simulation. RESULTS Three DCM- and senescence-related characteristic genes (MME, GNMT and PLA2G2A) were ultimately identified through comprehensive transcriptome analysis, and were experimentally verified in the doxorubicin induced mouse DCM. Meanwhile, the established diagnostic model, derived from dataset analysis, showed ideal diagnostic performance for DCM. Immune cell infiltration analysis suggested dysregulation of inflammation in DCM, and the characteristic genes were significantly associated with invasive immune cells. Finally, based on the specific gene expression profile of DCM, several potential therapeutic compounds were predicted through CMap analysis. In addition, molecular docking and molecular dynamics simulations suggested that CGA could bind to the active pocket of MME protein. CONCLUSION Our study presents three characteristic genes (MME, PLA2G2A, and GNMT) and a novel senescence-based diagnostic nomogram, and discusses potential therapeutic compounds, providing new insights into the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinying Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jing
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Navarro-Hortal M, Romero-Márquez JM, López-Bascón MA, Sánchez-González C, Xiao J, Sumalla-Cano S, Battino M, Forbes-Hernández TY, Quiles JL. In Vitro and In Vivo Insights into a Broccoli Byproduct as a Healthy Ingredient for the Management of Alzheimer's Disease and Aging through Redox Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5197-5211. [PMID: 38477041 PMCID: PMC10941188 DOI: 10.1021/acs.jafc.3c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Broccoli has gained popularity as a highly consumed vegetable due to its nutritional and health properties. This study aimed to evaluate the composition profile and the antioxidant capacity of a hydrophilic extract derived from broccoli byproducts, as well as its influence on redox biology, Alzheimer's disease markers, and aging in the Caenorhabditis elegans model. The presence of glucosinolate was observed and antioxidant capacity was demonstrated both in vitro and in vivo. The in vitro acetylcholinesterase inhibitory capacity was quantified, and the treatment ameliorated the amyloid-β- and tau-induced proteotoxicity in transgenic strains via SOD-3 and SKN-1, respectively, and HSP-16.2 for both parameters. Furthermore, a preliminary study on aging indicated that the extract effectively reduced reactive oxygen species levels in aged worms and extended their lifespan. Utilizing broccoli byproducts for nutraceutical or functional foods could manage vegetable processing waste, enhancing productivity and sustainability while providing significant health benefits.
Collapse
Affiliation(s)
- María
D. Navarro-Hortal
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - Jose M. Romero-Márquez
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - M. Asunción López-Bascón
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Sport
and Health Research Centre, University of
Granada, C/Menéndez
Pelayo 32, 18016 Granada, Spain
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Sandra Sumalla-Cano
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Health, Nutrition and Sport, Iberoamerican
International University, Campeche 24560, Mexico
| | - Maurizio Battino
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60131 Ancona, Italy
- International
Joint Research Laboratory of Intelligent Agriculture and Agri-Products
Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y. Forbes-Hernández
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L. Quiles
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
5
|
de Godoy MCX, Macedo JA, Gambero A. Researching New Drug Combinations with Senolytic Activity Using Senescent Human Lung Fibroblasts MRC-5 Cell Line. Pharmaceuticals (Basel) 2024; 17:70. [PMID: 38256903 PMCID: PMC10818379 DOI: 10.3390/ph17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Therapeutically targeting senescent cells seems to be an interesting perspective in treating chronic lung diseases, which are often associated with human aging. The combination of the drug dasatinib and the polyphenol quercetin is used in clinical trials as a senolytic, and the first results point to the relief of physical dysfunction in patients with idiopathic pulmonary fibrosis. In this work, we tested new combinations of drugs and polyphenols, looking for senolytic activity using human lung fibroblasts (MRC-5 cell line) with induced senescence. We researched drugs, such as azithromycin, rapamycin, metformin, FK-506, aspirin, and dasatinib combined with nine natural polyphenols, namely caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, epicatechin, hesperidin, quercetin, and resveratrol. We found new effective senolytic combinations with dasatinib and ellagic acid and dasatinib and resveratrol. Both drug combinations increased apoptosis, reduced BCL-2 expression, and increased caspase activity in senescent MRC-5 cells. Ellagic acid senolytic activity was more potent than quercetin, and resveratrol counteracted inflammatory cytokine release during senolysis in vitro. In conclusion, dasatinib and ellagic acid and dasatinib and resveratrol present in vitro senolytic potential like that observed for the combination in clinical trials of dasatinib and quercetin, and maybe they could be future alternatives in the senotherapeutic field.
Collapse
Affiliation(s)
- Maria Carolina Ximenes de Godoy
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Alessandra Gambero
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|