1
|
Backman TWH, Schenk C, Radivojevic T, Ando D, Singh J, Czajka JJ, Costello Z, Keasling JD, Tang Y, Akhmatskaya E, Garcia Martin H. BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale. PLoS Comput Biol 2023; 19:e1011111. [PMID: 37948450 PMCID: PMC10664898 DOI: 10.1371/journal.pcbi.1011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/22/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Metabolic fluxes, the number of metabolites traversing each biochemical reaction in a cell per unit time, are crucial for assessing and understanding cell function. 13C Metabolic Flux Analysis (13C MFA) is considered to be the gold standard for measuring metabolic fluxes. 13C MFA typically works by leveraging extracellular exchange fluxes as well as data from 13C labeling experiments to calculate the flux profile which best fit the data for a small, central carbon, metabolic model. However, the nonlinear nature of the 13C MFA fitting procedure means that several flux profiles fit the experimental data within the experimental error, and traditional optimization methods offer only a partial or skewed picture, especially in "non-gaussian" situations where multiple very distinct flux regions fit the data equally well. Here, we present a method for flux space sampling through Bayesian inference (BayFlux), that identifies the full distribution of fluxes compatible with experimental data for a comprehensive genome-scale model. This Bayesian approach allows us to accurately quantify uncertainty in calculated fluxes. We also find that, surprisingly, the genome-scale model of metabolism produces narrower flux distributions (reduced uncertainty) than the small core metabolic models traditionally used in 13C MFA. The different results for some reactions when using genome-scale models vs core metabolic models advise caution in assuming strong inferences from 13C MFA since the results may depend significantly on the completeness of the model used. Based on BayFlux, we developed and evaluated novel methods (P-13C MOMA and P-13C ROOM) to predict the biological results of a gene knockout, that improve on the traditional MOMA and ROOM methods by quantifying prediction uncertainty.
Collapse
Affiliation(s)
- Tyler W. H. Backman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Christina Schenk
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Tijana Radivojevic
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - David Ando
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Jahnavi Singh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, United States of America
| | - Jeffrey J. Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Jay D. Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- QB3 Institute, University of California, Berkeley, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Elena Akhmatskaya
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
- DOE Agile BioFoundry, Emeryville, California, United States of America
| |
Collapse
|
2
|
Moiz B, Li A, Padmanabhan S, Sriram G, Clyne AM. Isotope-Assisted Metabolic Flux Analysis: A Powerful Technique to Gain New Insights into the Human Metabolome in Health and Disease. Metabolites 2022; 12:1066. [PMID: 36355149 PMCID: PMC9694183 DOI: 10.3390/metabo12111066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024] Open
Abstract
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Surya Padmanabhan
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Gao Y, Yuan Q, Mao Z, Liu H, Ma H. Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis. BMC Microbiol 2021; 21:292. [PMID: 34696732 PMCID: PMC8543872 DOI: 10.1186/s12866-021-02357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Graph-based analysis (GBA) of genome-scale metabolic networks has revealed system-level structures such as the bow-tie connectivity that describes the overall mass flow in a network. However, many pathways obtained by GBA are biologically impossible, making it difficult to study how the global structures affect the biological functions of a network. New method that can calculate the biologically relevant pathways is desirable for structural analysis of metabolic networks. Results Here, we present a new method to determine the bow-tie connectivity structure by calculating possible pathways between any pairs of metabolites in the metabolic network using a flux balance analysis (FBA) approach to ensure that the obtained pathways are biologically relevant. We tested this method with 15 selected high-quality genome-scale metabolic models from BiGG database. The results confirmed the key roles of central metabolites in network connectivity, locating in the core part of the bow-tie structure, the giant strongly connected component (GSC). However, the sizes of GSCs revealed by GBA are significantly larger than those by FBA approach. A great number of metabolites in the GSC from GBA actually cannot be produced from or converted to other metabolites through a mass balanced pathway and thus should not be in GSC but in other subsets of the bow-tie structure. In contrast, the bow-tie structural classification of metabolites obtained by FBA is more biologically relevant and suitable for the study of the structure-function relationships of genome scale metabolic networks. Conclusions The FBA based pathway calculation improve the biologically relevant classification of metabolites in the bow-tie connectivity structure of the metabolic network, taking us one step further toward understanding how such system-level structures impact the biological functions of an organism. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02357-1.
Collapse
Affiliation(s)
- Yajie Gao
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qianqian Yuan
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hao Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
4
|
Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ. Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 2020; 64:101-109. [PMID: 31927061 DOI: 10.1016/j.copbio.2019.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The genomic revolution ushered in an era of discovery and characterization of enzymes from novel organisms that fueled engineering of microbes to produce commodity and high-value compounds. Over the past decade advances in synthetic biology tools in recent years contributed to significant progress in metabolic engineering efforts to produce both biofuels and bioproducts resulting in several such related items being brought to market. These successes represent a burgeoning bio-economy; however, significant resources and time are still necessary to progress a system from proof-of-concept to market. In order to fully realize this potential, methods that examine biological systems in a comprehensive, systematic and high-throughput manner are essential. Recent success in synthetic biology has coincided with the development of systems biology and analytical approaches that kept pace and scaled with technology development. Here, we review a selection of systems biology methods and their use in synthetic biology approaches for microbial biotechnology platforms.
Collapse
Affiliation(s)
- Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|