1
|
Nguyen VL, Stangoulis J. Salt tolerance in wheat is associated with the maintenance of shoot biomass, stomatal conductance, and sucrose in the phloem. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70008. [PMID: 39262833 PMCID: PMC11389530 DOI: 10.1002/pei3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Wheat (Triticum aestivum L.) is a mega-staple for millions of the world's populations and its yield potential is impacted by soil salinization. This study investigated genotypic variation in salt tolerance among six wheat genotypes, Gladius, Drysdale, GD0014, GD0120, GD0180, and GD0185. The study also characterized shoot traits, photosynthetic traits, leaf Na and K concentrations, and phloem sucrose. The plants were grown under controlled growth room conditions at 0 mM NaCl (Control) and 100 mM NaCl. The results showed that the salt tolerance index (STISFW, SFW: shoot fresh weight) varied from 0.52 for GD0120 to 0.69 for GD0180. Based on the STISFW, salt tolerance for the wheat genotypes was in the order, GD0180 > Gladius > GD0185 > Drysdale > GD0014 > GD0120. Projected shoot area (PSA) at all growth stages, 14, 20, 27, 34, and 40 DAS were strongly correlated with SFW at 45 DAS. Salt treatment significantly increased phloem sucrose level in the salt intolerant, Drysdale, while having no effect on this parameter in Gladius. Gladius showed greater maintenance of stomatal conductance than Drysdale. The relative ratio of K/Na between treatment and control was strongly correlated with the relative ratio of SFW (r = .85). The correlation between PSA at 14 DAS and SFW at 45 DAS and the correlation between the relative ratio of K/Na between treatment and control with STISFW identify these parameters to be potential traits for screening salt tolerance in wheat. Higher salt tolerance in Gladius would be associated with higher maintenance of stomatal conductance and enhanced phloem sucrose transport.
Collapse
Affiliation(s)
- Van Lam Nguyen
- College of Science and Engineering, Flinders University Bedford Park South Australia Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University Bedford Park South Australia Australia
| |
Collapse
|
2
|
Bühler A, Schweiger R. Niche construction and niche choice by aphids infesting wheat ears. Oecologia 2024; 206:47-59. [PMID: 39227465 PMCID: PMC11489299 DOI: 10.1007/s00442-024-05612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The niche of aphids is largely defined by their consumption of plant phloem sap and its composition, including nutrients and specialized metabolites. Niche construction is the change of the environment by organisms, which may influence the fitness of these organisms and their offspring. To better understand interactions between plants and aphids, it is necessary to investigate whether aphids modify the chemical composition of the phloem sap of their host plants and whether conspecifics are affected by previous infestation. In the current study, ears of wheat (Triticum aestivum) plants were infested with clonal lineages of the English grain aphid (Sitobion avenae) or were left uninfested. The metabolic composition of ear phloem sap exudates was analyzed through amino acid profiling and metabolic fingerprinting. Aphids of the clonal lineages were either put on previously aphid-infested or on uninfested ears and their colony sizes followed over time. Furthermore, it was investigated whether aphids choose one treatment group over another. Sitobion avenae infestation affected the relative concentrations of some metabolites in the phloem exudates of the ears. Compared to uninfested plants, the relative concentration of asparagine was higher after aphid infestation. Colonies grew significantly larger on previously aphid-infested ears, which the aphids also clearly chose in the choice experiment. The pronounced positive effect of previous infestation on aphid colonies indicates niche construction, while the choice of these constructed niches reveals niche choice by S. avenae on wheat. The interplay between these different niche realization processes highlights the complexity of interactions between aphids and their hosts.
Collapse
Affiliation(s)
- Andreas Bühler
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
3
|
Gao H, Li D, Hu H, Zhou F, Yu Y, Wei Q, Liu Q, Liu M, Hu P, Chen E, Song P, Su X, Guan Y, Qiao M, Ru Z, Li C. Regulation of carbohydrate metabolism during anther development in a thermo-sensitive genic male-sterile wheat line. PLANT, CELL & ENVIRONMENT 2024; 47:2410-2425. [PMID: 38517937 DOI: 10.1111/pce.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.
Collapse
Affiliation(s)
- Huanting Gao
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Dongxiao Li
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Feng Zhou
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yongang Yu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qichao Wei
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qili Liu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mingjiu Liu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ping Hu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Eryong Chen
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Puwen Song
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiaojia Su
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuanyuan Guan
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mei Qiao
- College of Science and Engineering, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhengang Ru
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Chengwei Li
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Ma C, Xie P, Yang J, Lin L, Zhang K, Zhang H. Evaluating the contributions of leaf organ to wheat grain cadmium at the filling stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155217. [PMID: 35429556 DOI: 10.1016/j.scitotenv.2022.155217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an element of global concern in agricultural fields owing to its high bioavailability and its risk to human health via the consumption of wheat products. However, whether wheat leaves can directly absorb atmospheric Cd and transport them to the grains along with the contribution of leaves to Cd accumulation in the grains is not clear. We evaluated this mechanism through three comparative treatments: 1) exposure to atmospheric deposition (CK), 2) no exposure to atmospheric deposition (T1), and 3) exposure to atmospheric deposition with leaf cutting (T2). The Cd accumulation rate of grains in the CK, T1, and T2 groups all showed an increasing trend, followed by a decreasing trend, which was consistent with the trend of filling rate. Moreover, the critical period for leaf Cd accumulation in the grains was the early filling period, and its contribution decreased gradually as filling progressed. The contribution of the leaves to grain Cd reached 31.73% at maturity, with the reactivation of stored Cd in leaves pre-flowering and the newly absorbed atmospheric Cd by leaves post-flowering contributing 19.76% and 11.97% to Cd accumulation in grains, respectively, at maturity. Sub-microstructure analysis of the leaves further confirmed that the direct Cd absorption by leaves from atmospheric deposition through stomata contributed to Cd accumulation in wheat grains. Therefore, controlling the sources of atmospheric Cd pollution and reducing Cd absorption by leaves during grain filling can effectively control Cd pollution of wheat grains. This study provides significant insights on how to more effectively control the Cd content of edible part of wheat and ensure food security.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
5
|
The Dynamics of Phosphorus Uptake and Remobilization during the Grain Development Period in Durum Wheat Plants. PLANTS 2022; 11:plants11081006. [PMID: 35448734 PMCID: PMC9029974 DOI: 10.3390/plants11081006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Post-anthesis phosphorus (P) uptake and the remobilization of the previously acquired P are the principal sources of grain P nutrition in wheat. However, how the acquired P reaches the grains and its partitioning at the whole plant level remain poorly understood. Here, the temporal dynamics of the newly acquired P in durum wheat organs and its allocation to grain were examined using pulse-chase 32P-labeling experiments at 5 and 14 days after anthesis. Durum wheat plants were grown hydroponically under high and low P supplies. Each labeling experiment lasted for 24 h. Plants were harvested 24, 48, and 96 h after labeling. Low and high P treatments significantly affected the allocation of the newly acquired P at the whole plant level. Three days (96 h) after the first 32P-labeling, 8% and 4% of the newly acquired P from exogenous solution were allocated to grains, 73% and 55% to the remainder aboveground organs, and 19% and 41% to the roots at low and high P supplies, respectively. Three days after the second labeling, the corresponding values were 48% and 20% in grains, 44% and 53% in the remainder aboveground organs, and 8% and 27% in roots at low and high P supplies, respectively. These results reveal that the dynamics of P allocation to grain was faster in plants grown under low P supply than under high supply. However, the obtained results also indicate that the origin of P accumulated in durum wheat grains was mainly from P remobilization with little contribution from post-anthesis P uptake. The present study emphasizes the role of vegetative organs as temporary storage of P taken up during the grain filling period before its final allocation to grains.
Collapse
|
6
|
Li C, Wang L, Wu J, Blamey FPC, Wang N, Chen Y, Ye Y, Wang L, Paterson DJ, Read TL, Wang P, Lombi E, Wang Y, Kopittke PM. Translocation of Foliar Absorbed Zn in Sunflower ( Helianthus annuus) Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:757048. [PMID: 35310668 PMCID: PMC8924476 DOI: 10.3389/fpls.2022.757048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Foliar zinc (Zn) fertilization is an important approach for overcoming crop Zn deficiency, yet little is known regarding the subsequent translocation of this foliar-applied Zn. Using synchrotron-based X-ray fluorescence microscopy (XFM) and transcriptome analysis, the present study examined the translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Although bulk analyses showed that there had been minimal translocation of the absorbed Zn out of the leaf within 7 days, in situ analyses showed that the distribution of Zn in the leaf had changed with time. Specifically, when Zn was applied to the leaf for 0.5 h and then removed, Zn primarily accumulated within the upper and lower epidermal layers (when examined after 3 h), but when examined after 24 h, the Zn had moved to the vascular tissues. Transcriptome analyses identified a range of genes involved in stress response, cell wall reinforcement, and binding that were initially upregulated following foliar Zn application, whereas they were downregulated after 24 h. These observations suggest that foliar Zn application caused rapid stress to the leaf, with the initial Zn accumulation in the epidermis as a detoxification strategy, but once this stress decreased, Zn was then moved to the vascular tissues. Overall, this study has shown that despite foliar Zn application causing rapid stress to the leaf and that most of the Zn stayed within the leaf over 7 days, the distribution of Zn in the leaf had changed, with Zn mostly located in the vascular tissues 24 h after the Zn had been applied. Not only do the data presented herein provide new insight for improving the efficiency of foliar Zn fertilizers, but our approach of combining XFM with a transcriptome methodological system provides a novel approach for the study of element translocation in plants.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Jingtao Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - F. Pax C. Blamey
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Yin Ye
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | | | - Thea L. Read
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Peter M. Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Abstract
Horticultural crop production is moving towards an era of higher nutrient use efficiency since nutrient deficiencies can reduce plant growth, productivity, and quality, and overfertilization can cause environmental pollution. Rapid nutrient concentration diagnostic is essential to minimize the negative effects of Huanglongbing (HLB) or citrus greening in citrus by providing the required nutrients before deficiency symptoms appear, reducing the impact of the disease on crop production. Sap analysis is an additional tool for fine-tuning nutrient applications in citrus. The main objective of this paper is to review the different methodologies and results obtained with sap analysis, considering its potential application in citrus production. Results from other crops show the pros and cons of using this tool. Substantial research has been conducted on vegetables and greenhouse crops, but few studies are available on perennial species such as citrus. Inconsistency in the extraction and analysis methods and the lack of specific sufficiency ranges for citrus open the path for further studies. Along with soil and leaf analyses, sap analysis is a complementary technique that can improve nutrient use efficiency in citrus production. Moreover, sap analysis has the potential to optimize fertilizer application, minimize environmental impacts and improve sustainability.
Collapse
|
9
|
Joukhadar R, Thistlethwaite R, Trethowan RM, Hayden MJ, Stangoulis J, Cu S, Daetwyler HD. Genomic selection can accelerate the biofortification of spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3339-3350. [PMID: 34254178 DOI: 10.1007/s00122-021-03900-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Genomic selection enabled accurate prediction for the concentration of 13 nutritional element traits in wheat. Wheat biofortification is one of the most sustainable strategies to alleviate mineral deficiency in human diets. Here, we investigated the potential of genomic selection using BayesR and Bayesian ridge regression (BRR) models to predict grain yield (YLD) and the concentration of 13 nutritional elements in grains (B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P and Zn) using a population of 1470 spring wheat lines. The lines were grown in replicated field trials with two times of sowing (TOS) at 3 locations (Narrabri-NSW, all lines; Merredin-WA and Horsham-VIC, 200 core lines). Narrow-sense heritability across environments (locations/TOS) ranged from 0.09 to 0.45. Co, K, Na and Ca showed low to negative genetic correlations with other traits including YLD, while the remaining traits were negatively correlated with YLD. When all environments were included in the reference population, medium to high prediction accuracy was observed for the different traits across environments. BayesR had higher average prediction accuracy for mineral concentrations (r = 0.55) compared to BRR (r = 0.48) across all traits and environments but both methods had comparable accuracies for YLD. We also investigated the utility of one or two locations (reference locations) to predict the remaining location(s), as well as the ability of one TOS to predict the other. Under these scenarios, BayesR and BRR showed comparable performance but with lower prediction accuracy compared to the scenario of predicting reference environments for new lines. Our study demonstrates the potential of genomic selection for enriching wheat grain with nutritional elements in biofortification breeding.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.
| | - Rebecca Thistlethwaite
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, Australia
| | - Matthew J Hayden
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Suong Cu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
A high-resolution genome-wide association study of the grain ionome and agronomic traits in rice Oryza sativa subsp. indica. Sci Rep 2021; 11:19230. [PMID: 34584121 PMCID: PMC8478900 DOI: 10.1038/s41598-021-98573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
This study presents a comprehensive study of the genetic bases controlling variation in the rice ionome employing genome-wide association studies (GWAS) with a diverse panel of indica accessions, each genotyped with 5.2 million markers. GWAS was performed for twelve elements including B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, and Zn and four agronomic traits including days to 50% flowering, grain yield, plant height and thousand grain weight. GWAS identified 128 loci associated with the grain elements and 57 associated with the agronomic traits. There were sixteen co-localization regions containing QTL for two or more traits. Fourteen grain element quantitative trait loci were stable across growing environments, which can be strong candidates to be used in marker-assisted selection to improve the concentrations of nutritive elements in rice grain. Potential candidate genes were revealed including OsNAS3 linked to the locus that controls the variation of Zn and Co concentrations. The effects of starch synthesis and grain filling on multiple grain elements were elucidated through the likely involvement of OsSUS1 and OsGSSB1 genes. Overall, our study provides crucial insights into the genetic basis of ionomic variations in rice and will facilitate improvement in breeding for trace mineral content.
Collapse
|
11
|
Shtangeeva I, Vīksna A, Bērtiņš M, Ryumin A, Grebnevs V. Variations in the concentrations of macro- and trace elements in two grasses and in the rhizosphere soil during a day. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114265. [PMID: 32142978 DOI: 10.1016/j.envpol.2020.114265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/01/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
The aim of the research was to study short-term variations in concentrations of 17 elements in two widely distributed natural plant species (couch grass and plantain) and in the rhizosphere soil of the plants. The plant and soil samples were collected in a field from a small site over a daytime. In the course of the day, the variations of the total amounts of C, N, and H in the rhizosphere soil were rather marked and different for the soils taken from roots of plantain and couch grass. The concentrations of some other elements in the rhizosphere soil of the plants varied in a similar way. The short-term variations of element concentrations in roots and leaves of the plants were also rather large. In many cases, a decrease of element concentration in roots correlated with an increase of its concentration in leaves. Although couch grass and plantain were collected simultaneously and from the same site, mean concentrations of many elements in the two plant species were statistically significantly different. This may be result of the fact that the plants belong to different clades. The differences between concentrations of most part of elements in roots and leaves of the plants were also statistically significant. The concentrations of many trace elements were higher in roots than in leaves, while the concentrations of essential plant nutrients were often higher in leaves compared to roots. The distribution of elements between different plant parts were not the same in couch grass and plantain.
Collapse
Affiliation(s)
- Irina Shtangeeva
- Institute of Earth Sciences, St. Petersburg University, Universitetskaya nab.,7/9, St. Petersburg, 199034, Russia.
| | - Arturs Vīksna
- Faculty of Chemistry, University of Latvia, Jelgavas street 1, LV-1004, Riga, Latvia
| | - Māris Bērtiņš
- Faculty of Chemistry, University of Latvia, Jelgavas street 1, LV-1004, Riga, Latvia
| | - Alexander Ryumin
- Institute of Earth Sciences, St. Petersburg University, Universitetskaya nab.,7/9, St. Petersburg, 199034, Russia
| | - Vladlens Grebnevs
- Faculty of Chemistry, University of Latvia, Jelgavas street 1, LV-1004, Riga, Latvia
| |
Collapse
|