1
|
Koci O, Russell RK, Shaikh MG, Edwards C, Gerasimidis K, Ijaz UZ. CViewer: a Java-based statistical framework for integration of shotgun metagenomics with other omics datasets. MICROBIOME 2024; 12:117. [PMID: 38951915 PMCID: PMC11218139 DOI: 10.1186/s40168-024-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration. RESULTS In this study, we have developed a Java-based statistical framework ( https://github.com/KociOrges/cviewer ) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships. CONCLUSIONS CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.
Collapse
Affiliation(s)
- Orges Koci
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children & Young People, Edinburgh, EH16 4TJ, UK
| | - M Guftar Shaikh
- Department of Endocrinology, Royal Hospital for Children, Glasgow, 1345 Govan Rd., Glasgow, G51 4T, UK
| | - Christine Edwards
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, G11 6EW, UK.
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
2
|
Chen B, Wang Y, Wang Q, Li D, Huang X, Kuang X, Wang S, Hu Z. Untargeted metabolomics identifies potential serum biomarkers associated with Crohn's disease. Clin Exp Med 2023; 23:1751-1761. [PMID: 36329220 DOI: 10.1007/s10238-022-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Crohn's disease (CD) is well characterized by chronic inflammation of the gastrointestinal tract. The diagnose of CD relays on the comprehensive evaluation of patient symptoms, laboratory examination, radiology, and endoscopy. There is lack of biomarkers or simple test for CD detection. Serum samples from healthy subjects (n = 16) and CD patients (n = 16) were collected and prepared for untargeted metabolomics analysis using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method. The alterations of serum metabolites and the potential biomarkers were profiled by statistical analysis. And the associated metabolic pathway was analyzed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The performance of potential biomarkers was assessed by receiver operating characteristic (ROC) analysis. A complete separation between HS and CD groups was seen in OPLS-DA. A total of 108 and 131 significantly altered metabolites in positive and negative ion mode, respectively, were identified, and most of them belong to several pathways ranging from lipid metabolism to amino acid metabolism and energy homeostasis. KEGG analysis revealed that lipid metabolism enriched most significantly. Further, ceramide, phosphatidylethanolamine (PE), and taurochenodeoxycholic acid (TCDCA) presented the highest predictive accuracy of the patients with CD as analyzed by ROC. The current study demonstrated that lipid metabolism is mostly related to CD pathogenesis. Further investigations are indicated to examine the use of lipid-related metabolites of ceramide, PE, and TCDCA as potential biomarkers for CD diagnosis.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Qing Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Dingqi Li
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaotan Huang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaojin Kuang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Shuzhong Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
3
|
Upadhyay KG, Desai DC, Ashavaid TF, Dherai AJ. Microbiome and metabolome in inflammatory bowel disease. J Gastroenterol Hepatol 2023; 38:34-43. [PMID: 36287112 DOI: 10.1111/jgh.16043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 01/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease of unknown etiology, involving complex interactions between the gut microbiome and host immune response. The microbial dysbiosis is well documented in IBD and significantly influences the host metabolic pathways. Thus, a metabolomic fingerprint resulting from the influence of gut dysbiosis in IBD could aid in assessing the disease activity. PubMed, Medline, Science Direct, and Web of Science were searched for studies exploring the association between microbiome and metabolome in IBD patients in the last 5 years. Additionally, references of cited original articles and reviews were further assessed for relevant work. We provide a literature overview of the recent metabolomic studies performed on patients with IBD. The findings report alterations in the metabolite levels of these patients. We also discuss the gut dysbiosis observed in IBD and its influence on host metabolic pathways such as lipids, amino acids, short-chain fatty acids, and others. IBD, being a chronic idiopathic disease, requires routine monitoring. The available non-invasive markers have their limitations. The metabolite changes account for both dysbiosis and its influence on the host's immune response and metabolism. A metabolome approach would thus facilitate the identification of surrogate metabolite markers reflecting the disease activity.
Collapse
Affiliation(s)
- Khushboo G Upadhyay
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Devendra C Desai
- Department of Gastroenterology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Alpa J Dherai
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
4
|
Gerasimidis K, Gkikas K, Stewart C, Neelis E, Svolos V. Microbiome and paediatric gut diseases. Arch Dis Child 2022; 107:784-789. [PMID: 34716173 DOI: 10.1136/archdischild-2020-320875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022]
Abstract
In the human gut resides a vast community of microorganisms which perform critical functions for the maintenance of whole body homeostasis. Changes in the composition and function of this community, termed microbiome, are believed to provoke disease onset, including non-communicable diseases. In this review, we debate the current evidence on the role of the gut microbiome in the pathogenesis, outcomes and management of paediatric gut disease. We conclude that even though the gut microbiome is altered in paediatric inflammatory bowel disease, coeliac disease, intestinal failure, necrotising enterocolitis and irritable bowel syndrome, there are currently very few implications for unravelling disease pathogenesis or guiding clinical practice. In the future, the gut microbiome may aid in disease differential diagnosis and prediction of clinical outcomes, and comprise a target for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Neelis
- Paediatric Gastroenterology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Vaios Svolos
- Human Nutrition, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Zhou X, Li S, Zhou Y, Zhang H, Yan B, Wang H, Xiao Y. A metabolomics study of the intervention effect of Tartary buckwheat on hyperlipidemia mice. J Food Biochem 2022; 46:e14359. [DOI: 10.1111/jfbc.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Xiaoli Zhou
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- Institute of Beautiful China and Ecological Civilization University Think Tank of Shanghai Municipality Shanghai China
| | - Senjie Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yiming Zhou
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- Department of Food Science and Engineering Shanghai Institute of Technology Shanghai P. R. China
| | - Huan Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Beibei Yan
- Institute of Beautiful China and Ecological Civilization University Think Tank of Shanghai Municipality Shanghai China
| | - Hong Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ying Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
6
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Jagt JZ, Verburgt CM, de Vries R, de Boer NKH, Benninga MA, de Jonge WJ, van Limbergen JE, de Meij TGJ. Faecal Metabolomics in Paediatric Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2022; 16:1777-1790. [PMID: 35679608 PMCID: PMC9683079 DOI: 10.1093/ecco-jcc/jjac079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Paediatric inflammatory bowel disease [IBD] is characterized by altered immunological and metabolic pathways. Metabolomics may therefore increase pathophysiological understanding and could develop into characterization of biomarkers for diagnosis and IBD treatment response. However, no uniform metabolomic profiles have been identified to date. This systematic review aimed to identify faecal metabolomic signatures in paediatric IBD vs controls, and to describe metabolites associated with disease activity and treatment response. METHODS A literature search was performed in Embase, Medline, Web of Science and Cochrane Library. Studies assessing faecal metabolomics in paediatric patients < 18 years with IBD [de novo, active, inactive] with comparative groups [IBD vs non-IBD; responders vs non-responders] were included. The quality of included studies was assessed according to the Newcastle-Ottawa Scale. RESULTS Nineteen studies were included [540 patients with IBD, 386 controls], assessing faecal short-chain fatty acids [SCFA] [five studies], amino acids [AA] [ten studies], bile acids [BA] [eight studies] and other metabolites [nine studies] using various methodologies. Significantly increased levels of AA [particularly phenylalanine], primary BA and lower levels of secondary BA were described in paediatric IBD compared to controls. Faecal SCFA results varied across studies. Additionally, responders and non-responders to exclusive enteral nutrition and infliximab showed differences in baseline faecal metabolites [based on BA, AA]. CONCLUSIONS This systematic review provides evidence for distinct faecal metabolomic profiles in paediatric IBD. However, results varied across studies, possibly due to differences in study design and applied analytical techniques. Faecal metabolomics could provide more insight into host-microbial interactions in IBD, but further studies with standardized methodologies and reporting are needed.
Collapse
Affiliation(s)
- Jasmijn Z Jagt
- Corresponding author: Jasmijn Zaza Jagt, Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. Tel.: +316-50063766; E-mail:
| | | | - Ralph de Vries
- Medical Library, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute (AGEM), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, BK Amsterdam, The Netherlands,Department of Surgery, University of Bonn, Bonn, Germany
| | - Johan E van Limbergen
- Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands,Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, BK Amsterdam, The Netherlands,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Tim G J de Meij
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands,Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Jagt JZ, Struys EA, Ayada I, Bakkali A, Jansen EEW, Claesen J, van Limbergen JE, Benninga MA, de Boer NKH, de Meij TGJ. Fecal Amino Acid Analysis in Newly Diagnosed Pediatric Inflammatory Bowel Disease: A Multicenter Case-Control Study. Inflamm Bowel Dis 2022; 28:755-763. [PMID: 34757415 PMCID: PMC9074868 DOI: 10.1093/ibd/izab256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fecal metabolomic profiles differ between pediatric inflammatory bowel disease (IBD) patients and controls and may provide new insights in the pathophysiology of IBD. The role of amino acids, however, is not fully elucidated. We aimed to assess fecal amino acid profiles in pediatric IBD. METHODS In this case-control study, treatment-naïve, newly diagnosed pediatric IBD patients and a non-IBD control group, matched based on sex and age, were included in 2 tertiary centres. Fecal amino acid profiles were assessed using a targeted high-performance liquid chromatography technique. A random forest classifier method was used to develop a prediction model differentiating IBD from controls and predicting IBD phenotype. The association between IBD localization and amino acid concentrations was tested with ordinal regression models. RESULTS We included 78 newly diagnosed IBD patients (40 Crohn's disease [CD], 38 ulcerative colitis [UC]) and 105 controls. Patients with IBD could be differentiated from controls with an accuracy of 82% (sensitivity 63%, specificity 97%). Twenty-nine out of the 42 measured unique amino acids were included in the prediction model. Increased levels of tryptophan, taurine, alanine, ornithine, valine, histidine, and leucine were the most differentiating features. Children with CD and UC could be differentiated from the controls with an accuracy of 80% and 90%, respectively. Inflammatory bowel disease phenotype could not be predicted. Tryptophan, valine, and histidine levels were positively associated with more extended disease in UC patients (P < .05). CONCLUSIONS Fecal amino acids may enhance understanding of the role of host-microbial interactions in the pathophysiology of IBD and may evolve into biomarkers for pediatric IBD diagnostic and personalized medicine.
Collapse
Affiliation(s)
- Jasmijn Z Jagt
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ibrahim Ayada
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Abdellatif Bakkali
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin E W Jansen
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johan E van Limbergen
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, Vrije universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tim G J de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
11
|
Piri-Moghadam H, Miller A, Pronger D, Vicente F, Charrow J, Haymond S, Lin DC. A rapid LC-MS/MS assay for detection and monitoring of underivatized branched-chain amino acids in maple syrup urine disease. J Mass Spectrom Adv Clin Lab 2022; 24:107-117. [PMID: 35602306 PMCID: PMC9120951 DOI: 10.1016/j.jmsacl.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/14/2022] Open
Abstract
Branched chain amino acid (BCAA) testing is crucial in the diagnosis and monitoring of maple syrup urine disease (MSUD). Mixed mode chromatography can be applied to separate BCAAs without requiring sample derivatization. A rapid, clinically validated LC-MS/MS-based assay for analysis of underivatized BCAA in human plasma was developed. The assay involves minimal sample preparation without derivatization, rapid chromatographic separation, and requires only 20 µL of sample.
Introduction Quantitation of the isomeric branched-chain amino acids (BCAA; valine, alloisoleucine, isoleucine, leucine) is a challenging task that typically requires derivatization steps or long runtimes if a traditional chromatographic method involving a ninhydrin ion pairing reagent is used. Objectives To develop and perform clinical validation of a rapid, LC-MS/MS-based targeted metabolomics assay for detection and monitoring of underivatized BCAA in human plasma. Methods: Various columns and modes of chromatography were tested. The final optimized method utilized mixed mode chromatography with an Intrada column under isocratic condition. Sample preparation utilized the 96-well format. Briefly, extraction solvent containing the internal standard is added to 20 uL of sample, followed by shaking and positive pressure filtering, and the resulting extracted sample is analyzed. The assay was validated based on accepted quality standards (e.g., CLIA and CLSI) for clinical assays. Results The method is linear over a wide range of concentrations, 2.0–1500 µM, with LOD of 0.60 µM and LOQ of 2.0 µM. The precision of the assay was 4–10% across analytes. The method was also validated against reference laboratories via blinded split-sample analysis and demonstrated good agreement with accuracy: 89–95% relative to the external group mean. Conclusion We have developed a method that is accurate, rapid, and reliable for routine clinical testing of patient sample BCAA, which is used in the diagnosis and management of maple syrup urine disease (MSUD). The assay also has desirable characteristics, such as short run time, small sample volume requirement, simple sample preparation without the need for derivatization, and high throughput.
Collapse
|
12
|
Gut Microbial Metabolite-Mediated Regulation of the Intestinal Barrier in the Pathogenesis of Inflammatory Bowel Disease. Nutrients 2021; 13:nu13124259. [PMID: 34959809 PMCID: PMC8704337 DOI: 10.3390/nu13124259] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease. The disease has a multifactorial aetiology, involving genetic, microbial as well as environmental factors. The disease pathogenesis operates at the host-microbe interface in the gut. The intestinal epithelium plays a central role in IBD disease pathogenesis. Apart from being a physical barrier, the epithelium acts as a node that integrates environmental, dietary, and microbial cues to calibrate host immune response and maintain homeostasis in the gut. IBD patients display microbial dysbiosis in the gut, combined with an increased barrier permeability that contributes to disease pathogenesis. Metabolites produced by microbes in the gut are dynamic indicators of diet, host, and microbial interplay in the gut. Microbial metabolites are actively absorbed or diffused across the intestinal lining to affect the host response in the intestine as well as at systemic sites via the engagement of cognate receptors. In this review, we summarize insights from metabolomics studies, uncovering the dynamic changes in gut metabolite profiles in IBD and their importance as potential diagnostic and prognostic biomarkers of disease. We focus on gut microbial metabolites as key regulators of the intestinal barrier and their role in the pathogenesis of IBD.
Collapse
|
13
|
Svolos V, Gkikas K, Gerasimidis K. Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis. Proc Nutr Soc 2021; 80:1-15. [PMID: 34551834 DOI: 10.1017/s0029665121002846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aetiology of inflammatory bowel disease (IBD) is multifactorial, with diet and gut microbiota playing an important role. Nonetheless, there are very few studies, particularly clinical research, which have explored the interaction between diet and gut microbiota. In the current review, we summarise the evidence from clinical trials exploring the interactions between the gut microbiota and diet in the management of IBD. Data from the effect of exclusive enteral nutrition (EEN) on the gut microbiota of children with active Crohn's disease (CD), receiving induction treatment, offer opportunities to understand the role of gut microbiota in underlying disease pathogenesis and develop novel dietary and pharmacological microbial therapeutics. In contrast, the evidence which links the effectiveness of food-based dietary therapies for IBD with mechanisms involving the gut microbiota is far less convincing. The microbial signals arising from these dietary therapies are inconsistent and vary compared to the effects of effective treatment with EEN in CD.
Collapse
Affiliation(s)
- Vaios Svolos
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Konstantinos Gkikas
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| |
Collapse
|
14
|
Walker A, Schmitt-Kopplin P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int J Med Microbiol 2021; 311:151513. [PMID: 34147944 DOI: 10.1016/j.ijmm.2021.151513] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.
Collapse
Affiliation(s)
- Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Gerasimidis K, Godny L, Sigall-Boneh R, Svolos V, Wall C, Halmos E. Current recommendations on the role of diet in the aetiology and management of IBD. Frontline Gastroenterol 2021; 13:160-167. [PMID: 35300465 PMCID: PMC8862489 DOI: 10.1136/flgastro-2020-101429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diet is a key modifier of risk of inflammatory bowel disease development and potentially a treatment option in patients with established disease. International organisations in gastroenterology and inflammatory bowel disease have published guidelines for the role of diet in disease onset and its management. Here, we discuss the major overarching themes arising from these guidelines and appraise recent literature on the role of diet for inflammatory bowel disease prevention, treatment of active disease and maintenance of remission, considering these themes. Except for exclusive enteral nutrition in active Crohn's disease, we currently possess very little evidence to make any further dietary recommendations for the management of inflammatory bowel disease. There is also currently uncertainty on the extrapolation of epidemiological dietary signals on risk of disease development and preclinical experiments in animal models to management, once disease is established. Until high-quality evidence from clinical research becomes available, the only specific recommendations for inflammatory bowel disease we might safely give are those of healthy eating which apply for the general population for overall health and well-being.
Collapse
Affiliation(s)
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva and the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Rotem Sigall-Boneh
- Paediatric Gastroenterology and Nutrition Unit, Wolfson Medical Center, Holon and the Sackler Faculty of Medicine, Tel Aviv University, Israel, Holon, Israel
| | - Vaios Svolos
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - Catherine Wall
- Department of Medicine and Department of Human Nutrition, University of Otago Dunedin School of Medicine, Christchurch, New Zealand
| | - Emma Halmos
- Department of Gastroenterology, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Abstract
OBJECTIVES Host-microbial relationship is disrupted in inflammatory bowel diseases (IBD). We hypothesized that altered gut luminal microenvironment can impact microbial virulence in IBD, leading to disruption of homeostasis and disease. We investigated the relationship between gut microenvironment and microbial virulence. METHODS Intestinal aspirates were collected from 10 non-IBD controls, 9 Crohn disease, and 10 ulcerative colitis paediatric patients during endoscopy. In vitro invasion of bacteria isolated from the duodenum and terminal ileum (TI) was quantified using gentamicin protection assays. Intestinal epithelial cells were infected in vitro by known Escherichia coli strains with patient intestinal aspirates added. Nuclear magnetic resonance spectroscopy (NMR) analysis was conducted on intestinal aspirates to identify metabolites associated with invasion; these metabolites were then introduced to the infection model. RESULTS There was no difference in in vitro invasion of bacteria obtained from intestinal aspirates of non-IBD and IBD patients. Incubation of laboratory E coli strains with TI aspirates from IBD patients increased their invasion into epithelial cells in vitro. NMR analysis revealed intestinal metabolites that correlated with bacterial invasion; succinate present in the intestinal aspirates correlated positively, whereas acetate and formate related negatively with invasion. Addition of exogenous succinate increased invasion of E coli in vitro. CONCLUSIONS Alterations in the gut microenvironment in IBD can affect bacterial invasion. Succinate is associated with increased bacterial invasion and can alter bacterial virulence in IBD. This highlights the interaction between specific metabolites and bacteria that could be instrumental in propagating or suppressing inflammation in paediatric IBD patients.
Collapse
|
17
|
Nogacka AM, de Los Reyes-Gavilán CG, Martínez-Faedo C, Ruas-Madiedo P, Suarez A, Mancabelli L, Ventura M, Cifuentes A, León C, Gueimonde M, Salazar N. Impact of Extreme Obesity and Diet-Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Mol Nutr Food Res 2020; 65:e2000030. [PMID: 32966685 DOI: 10.1002/mnfr.202000030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SCOPE A limited number of human studies have characterized fecal microbiota and metabolome in extreme obesity and after diet-induced weight loss. METHODS AND RESULTS Fecal samples from normal-weight and extremely obese adults and from obese participants before and after moderate diet-induced weight loss are evaluated for their interaction with the intestinal adenocarcinoma cell line HT29 using an impedance-based in vitro model, which reveals variations in the interaction between the gut microbiota and host linked to obesity status. Microbiota composition, short chain fatty acids, and other intestinal metabolites are further analyzed to assess the interplay among diet, gut microbiota, and host in extreme obesity. Microbiota profiles are distinct between normal-weight and obese participants and are accompanied by fecal signatures in the metabolism of biliary compounds and catecholamines. Moderate diet-induced weight loss promotes shifts in the gut microbiota, and the primary fecal metabolomics features are associated with diet and the gut-liver and gut-brain axes. CONCLUSIONS Analyses of the fecal microbiota and metabolome enable assessment of the impact of diet on gut microbiota composition and activity, supporting the potential use of certain fecal metabolites or members of the gut microbiota as biomarkers for the efficacy of weight loss in extreme obesity.
Collapse
Affiliation(s)
- Alicja M Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Carlos León
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| |
Collapse
|
18
|
Hurtado-Lorenzo A, Honig G, Heller C. Precision Nutrition Initiative: Toward Personalized Diet Recommendations for Patients With Inflammatory Bowel Diseases. CROHN'S & COLITIS 360 2020; 2:otaa087. [PMID: 36777761 PMCID: PMC9802167 DOI: 10.1093/crocol/otaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|
19
|
Serum Metabolomics Revealed the Differential Metabolic Pathway in Calves with Severe Clinical Diarrhea Symptoms. Animals (Basel) 2020; 10:ani10050769. [PMID: 32354125 PMCID: PMC7278412 DOI: 10.3390/ani10050769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary The present study focuses on the metabolic changes in the diarrhea of calves, which are manifested with the following symptoms: a thin water-like stool, cold ears and nose, throbbing bowels, oliguria, a pale or yellowish complexion, a smooth mouth, and a slow pulse. The differential metabolic pathways in calves with diarrhea were screened by metabolomics. There were nine biomarkers in the serum of healthy calves and calves with diarrhea. On the basis of these biomarkers, their associated mineral absorption, protein digestion and absorption, and other metabolic pathways, the targeted regulation of the metabolic differences of calves with diarrhea may contribute to the diagnosis, treatment, and discussion of the mechanism of calf diarrhea. Abstract The complex etiology, higher morbidity and mortality, poor prognosis, and expensive cost of calf diarrhea have made it a catastrophic disease in the dairy industry. This study aims to assess the biomarkers in calves with diarrhea and to predict the biomarkers related to the pathway. As subjects, nine calves with diarrhea and nine healthy calves were enrolled, according to strict enrollment criteria. The serum metabolites were detected by a liquid chromatographic tandem mass spectrometry (LC-MS/MS), and then analyzed by online multivariate statistical analysis software to further screen the biomarkers. In addition, the biomarkers involved in the metabolic pathways of calves with diarrhea and healthy calves were analyzed. In the serum of calves with diarrhea, nine biomarkers were found to which several biomarkers exhibited a certain relation. Moreover, these biomarkers were involved in important metabolic pathways, including protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and fatty acid biosynthesis. All these findings suggested that the imbalance of these markers was closely related to the occurrence and development of calf diarrhea. The targeted regulation of metabolic pathways involved in these biomarkers may facilitate the diagnosis, treatment, and discussion of the mechanism of calf diarrhea.
Collapse
|
20
|
Di Giovanni N, Meuwis MA, Louis E, Focant JF. Untargeted Serum Metabolic Profiling by Comprehensive Two-Dimensional Gas Chromatography–High-Resolution Time-of-Flight Mass Spectrometry. J Proteome Res 2019; 19:1013-1028. [DOI: 10.1021/acs.jproteome.9b00535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nicolas Di Giovanni
- Department of Chemistry, Organic and Biological Analytical Chemistry Group, Quartier Agora, University of Liège, Allée du Six Août, B6c, B-4000 Liège (Sart Tilman), Belgium
| | - Marie-Alice Meuwis
- GIGA institute, Translational Gastroenterology and CHU de Liège, Hepato-Gastroenterology and Digestive Oncology, Quartier Hôpital, University of Liège, Avenue de l’Hôpital 13, B34-35, B-4000 Liège, Belgium
| | - Edouard Louis
- GIGA institute, Translational Gastroenterology and CHU de Liège, Hepato-Gastroenterology and Digestive Oncology, Quartier Hôpital, University of Liège, Avenue de l’Hôpital 13, B34-35, B-4000 Liège, Belgium
| | - Jean-François Focant
- Department of Chemistry, Organic and Biological Analytical Chemistry Group, Quartier Agora, University of Liège, Allée du Six Août, B6c, B-4000 Liège (Sart Tilman), Belgium
| |
Collapse
|
21
|
Gerasimidis K, Svolos V, Nichols B, Papadopoulou R, Quince C, Ijaz UZ, Milling S, Gaya DR, Russell RK, Hansen R. Reply. Gastroenterology 2019; 157:1161-1162. [PMID: 31408620 DOI: 10.1053/j.gastro.2019.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/08/2019] [Indexed: 12/02/2022]
Affiliation(s)
- Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Vaios Svolos
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Ben Nichols
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Simon Milling
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel R Gaya
- Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow, UK
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow, UK
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow, UK
| |
Collapse
|