1
|
Nguyen TV, Trang PN, Kumar A. Understanding PFAS toxicity through cell culture metabolomics: Current applications and future perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108620. [PMID: 38579451 DOI: 10.1016/j.envint.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, pose significant challenges to ecosystems and human health. While cell cultures have emerged as new approach methodologies (NAMs) in ecotoxicity research, metabolomics is an emerging technique used to characterize the small-molecule metabolites present in cells and to understand their role in various biological processes. Integration of metabolomics with cell cultures, known as cell culture metabolomics, provides a novel and robust tool to unravel the complex molecular responses induced by PFAS exposure. In vitro testing also reduces reliance on animal testing, aligning with ethical and regulatory imperatives. The current review summarizes key findings from recent studies utilizing cell culture metabolomics to investigate PFAS toxicity, highlighting alterations in metabolic pathways, biomarker identification, and the potential linkages between metabolic perturbations. Additionally, the paper discusses different types of cell cultures and metabolomics methods used for studies of environmental contaminants and particularly PFAS. Future perspectives on the combination of metabolomics with other advanced technologies, such as single-cell metabolomics (SCM), imaging mass spectrometry (IMS), extracellular flux analysis (EFA), and multi-omics are also explored, which offers a holistic understanding of environmental contaminants. The synthesis of current knowledge and identification of research gaps provide a foundation for future investigations that aim to elucidate the complexities of PFAS-induced cellular responses and contribute to the development of effective strategies for mitigating their adverse effects on human health.
Collapse
Affiliation(s)
- Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam.
| | - Phan Nguyen Trang
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam.
| | - Anu Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia.
| |
Collapse
|
2
|
Kong W, Ding G, Yang P, Li Y, Cheng G, Cai C, Xiao J, Feng H, Xu Z. Comparative Transcriptomic Analysis Revealed Potential Differential Mechanisms of Grass Carp Reovirus Pathogenicity. Int J Mol Sci 2023; 24:15501. [PMID: 37958486 PMCID: PMC10649309 DOI: 10.3390/ijms242115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.
Collapse
Affiliation(s)
- Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Guangyi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Peng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Yuqing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Chang Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| |
Collapse
|
3
|
Zeng R, Pan W, Lin Y, Liang M, Fu J, Weng S, He J, Guo C. A Safe and Efficient Double-Gene-Deleted Live Attenuated Immersion Vaccine to Prevent the Disease Caused by the Infectious Spleen and Kidney Necrosis Virus. J Virol 2023; 97:e0085723. [PMID: 37382530 PMCID: PMC10373555 DOI: 10.1128/jvi.00857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Infectious diseases seriously threaten sustainable aquaculture development, resulting in more than $10 billion in economic losses annually. Immersion vaccines are emerging as the key technology for aquatic disease prevention and control. Here, a safe and efficacious candidate immersion vaccine strain (Δorf103r/tk) of infectious spleen and kidney necrosis virus (ISKNV), in which the orf103r and tk genes were knocked out by homologous recombination, is described. Δorf103r/tk was severely attenuated in mandarin fish (Siniperca chuatsi), inducing mild histological lesions, a mortality rate of only 3%, and eliminated within 21 days. A single Δorf103r/tk immersion-administered dose provided long-lasting protection rates over 95% against lethal ISKNV challenge. Δorf103r/tk also robustly stimulated the innate and adaptive immune responses. For example, interferon expression was significantly upregulated, and the production of specific neutralizing antibodies against ISKNV was markedly induced postimmunization. This work provides proof-of-principle evidence for orf103r- and tk-deficient ISKNV for immersion vaccine development to prevent ISKNV disease in aquaculture production. IMPORTANCE Global aquaculture production reached a record of 122.6 million tons in 2020, with a total value of 281.5 billion U.S. dollars (USD). However, approximately 10% of farmed aquatic animal production is lost due to various infectious diseases, resulting in more than 10 billion USD of economic waste every year. Therefore, the development of vaccines to prevent and control aquatic infectious diseases is of great significance. Infectious spleen and kidney necrosis virus (ISKNV) infection occurs in more than 50 species of freshwater and marine fish and has caused great economic losses to the mandarin fish farming industry in China during the past few decades. Thus, it is listed as a certifiable disease by the World Organization for Animal Health (OIE). Herein, a safe and efficient double-gene-deleted live attenuated immersion vaccine against ISKNV was developed, providing an example for the development of aquatic gene-deleted live attenuated immersion vaccine.
Collapse
Affiliation(s)
- Ruoyun Zeng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifan Lin
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mincong Liang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Fu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Wang Z, Aweya JJ, Yao D, Zheng Z, Wang C, Zhao Y, Li S, Zhang Y. Taurine metabolism is modulated in Vibrio-infected Penaeus vannamei to shape shrimp antibacterial response and survival. MICROBIOME 2022; 10:213. [PMID: 36464721 PMCID: PMC9721036 DOI: 10.1186/s40168-022-01414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.
Collapse
Affiliation(s)
- Zhongyan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
5
|
Gu J, Zhu Y, Guo M, Yin X, Liang M, Lou X, Chen J, Zhou L, Fan D, Shi L, Hu G, Ji G. The potential mechanism of BPF-induced neurotoxicity in adult zebrafish: Correlation between untargeted metabolomics and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156221. [PMID: 35623532 DOI: 10.1016/j.scitotenv.2022.156221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol F (BPF) is becoming the main substitute for bisphenol A (BPA) in plastics for food and beverage applications. Previous studies have demonstrated the neurotoxicity of BPF; however, its lifecycle toxicity and the underlying mechanisms remain poorly understood. In the current study, zebrafish were continuously exposed to BPF for four months from the embryo to adult stages in order to assess its neurotoxicity. Locomotor behaviors significantly decreased after BPF exposure, which was accompanied by a decrease in body weight, length, and hatching rate. Additionally, BPF increased the expression of inflammatory genes in the brain and destroyed the zebrafishes' intestinal integrity. Meanwhile, the 16S rRNA gene sequence results showed a significantly decreased microbiota abundance and diversity following BPF treatment. Neurotransmitter metabolites were also altered by BPF. Notably, the correlation analysis between microbiota and neurotransmitter metabolism verified that gut microbiota dysbiosis was closely related to the disturbance of neurotransmitter metabolites. Therefore, the present study evaluated the neurotoxicity of lifecycle exposure to BPF and unraveled a novel mechanism involving disturbance of neurotransmitter metabolism and gut dysbiosis, which may provide potential targets for BPF-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Lou
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingrong Chen
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences,Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
6
|
Ijaz M, Zhang D, Hou C, Mahmood M, Hussain Z, Zheng X, Li X. Changes in postmortem metabolite profile of atypical and typical DFD beef. Meat Sci 2022; 193:108922. [DOI: 10.1016/j.meatsci.2022.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
|
7
|
The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells. Microbiol Spectr 2022; 10:e0231021. [PMID: 35019690 PMCID: PMC8754121 DOI: 10.1128/spectrum.02310-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Under oxidative stress, viruses prefer glycolysis as an ATP source, and glutamine is required as an anaplerotic substrate to replenish the TCA cycle. Infectious spleen and kidney necrosis virus (ISKNV) induces reductive glutamine metabolism in the host cells. Here we report that ISKNV infection the increased NAD+/NADH ratio and the gene expression of glutaminase 1 (GLS1), glutamate dehydrogenase (GDH), and isocitrate dehydrogenase (IDH2) resulted in the phosphorylation and activation of mammalian target of rapamycin (mTOR) in CPB cells. Inhibition of mTOR signaling attenuates ISKNV-induced the upregulation of GLS1, GDH, and IDH2 genes expression, and exhibits significant antiviral activity. Moreover, the expression of silent information regulation 2 homolog 3 (SIRT3) in mRNA level is increased to enhance the reductive glutamine metabolism in ISKNV-infected cells. And those were verified by the expression levels of metabolic genes and the activities of metabolic enzymes in SIRT3-overexpressed or SIRT3-knocked down cells. Remarkably, activation of mTOR signaling upregulates the expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, leading to increased expression of SIRT3 and metabolic genes. These results indicate that mTOR signaling manipulates reductive glutamine metabolism in ISKNV-infected cells through PGC-1α-dependent regulation of SIRT3. Our findings reveal new insights on ISKNV-host interactions and will contribute new cellular targets to antiviral therapy. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation. Our previous study demonstrated that ISKNV replication induced glutamine metabolism reprogramming, and it is necessary for the ISKNV multiplication. In this study, the mechanistic link between the mTOR/PGC-1α/SIRT3 pathway and reductive glutamine metabolism in the ISKNV-infected cells was provided, which will contribute new insights into the pathogenesis of ISKNV and antiviral treatment strategies.
Collapse
|
8
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|
9
|
Yang X, Lai JL, Li J, Zhang Y, Luo XG, Han MW, Zhu YB, Zhao SP. Biodegradation and physiological response mechanism of Bacillus aryabhattai to cyclotetramethylenete-tranitramine (HMX) contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112247. [PMID: 33765573 DOI: 10.1016/j.jenvman.2021.112247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 05/14/2023]
Abstract
This study aims to reveal the biodegradation and interaction mechanism of cyclotetramethylenete-tranitramine (HMX) by a newly isolated bacteria. In this study, a bacterial strain (Bacillus aryabhattai) with high efficiency for HMX degradation was used as the test organism to analyze the changes in growth status, cell function, and mineral metabolism following exposure to different stress concentrations (0 and 5 mg L-1) of HMX. Non-targeted metabonomics was used to reveal the metabolic response of this strain to HMX stress. The results showed that when the HMX concentration was 5 mg L-1, the removal rate of HMX within 24 h of inoculation with Bacillus aryabhatta was as high as 90.5%, the OD600 turbidity was 1.024, and the BOD5 was 225 mg L-1. Scanning electron microscope (SEM) images showed that the morphology of bacteria was not obvious Variety, Fourier transform infrared spectroscopy (FTIR) showed that the cell surface -OH functional groups drifted, and ICP-MS showed that the cell mineral element metabolism was disturbed. Non-targeted metabonomics showed that HMX induced the differential expression of 254 metabolites (133 upregulated and 221 downregulated). The main differentially expressed metabolites during HMX stress were lipids and lipid-like molecules, and the most significantly affected metabolic pathway was purine metabolism. At the same time, the primary metabolic network of bacteria was disordered. These results confirmed that Bacillus aryabhattai has a high tolerance to HMX and can efficiently degrade HMX. The degradation mechanism involves the extracellular decomposition of HMX and transformation of the degradation products into intracellular purines, amino sugars, and nucleoside sugars that then participate in cell metabolism.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yong-Bing Zhu
- National NBC National Key Laboratory of Civilian Protection, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
10
|
Yang X, Lai JL, Li J, Zhang Y, Luo XG, Li ZG. Biodegradation and physiological response mechanism of a bacterial strain to 2,4,6-trinitrotoluene contamination. CHEMOSPHERE 2021; 270:129280. [PMID: 33418226 DOI: 10.1016/j.chemosphere.2020.129280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to reveal the biodegradation characteristics and physiological response mechanism of a newly isolated bacterium to 2,4,6-trinitrotoluene (TNT) contamination. A Klebsiella variicola strain with high efficiency of TNT degradation was used as the test strain to analyze the changes in cell growth, morphology, and functional groups under different TNT concentrations (0, 100 mg⋅L-1) and the effects of TNT stress on the metabolic profile as revealed by non-targeted metabonomics. A TNT concentration of 100 mg L-1 caused a significant increase in the 5-day biochemical oxygen demand (BOD5) to 950 mg L-1, while the degradation rate of TNT reached 100% within 30 h after inoculation with Klebsiella variicola. Fourier transform infrared spectroscopy (FTIR) analysis showed changes in the characteristic peak of triamide by TNT treatment. Non-targeted metabonomics identified a total of 544 differentially produced metabolites under TNT treatment (252 upregulated and 292 downregulated), mainly lipids and lipid-like molecules. The metabolic pathways associated with amino acid biosynthesis and metabolism were the most significantly enriched pathways, and simultaneous detection showed that TNT was degraded to 4-amino-2,6-dinitrotoluene (DNT), 2-hydroxylamino-4,6-DNT, 2-amino-4,6-DNT, 2-amino-4-nitrotoluene, and 2,4-DNT. These results confirmed that Klebsiella variicola has a high tolerance to TNT and efficiently degrades it. The degradation mechanism involves TNT-induced accelerated amino acid biosynthesis, production of a protease to catalyze the TNT transformation, and the participation of the transformed TNT products in cell metabolism.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
11
|
Yang BT, Wen B, Ji Y, Wang Q, Zhang HR, Zhang Y, Gao JZ, Chen ZZ. Comparative metabolomics analysis of pigmentary and structural coloration in discus fish (Symphysodon haraldi). J Proteomics 2020; 233:104085. [PMID: 33378721 DOI: 10.1016/j.jprot.2020.104085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Discus fish have a variety of body colors including pigmentary and structural colors, studies on specific substances and related metabolic pathways associated with body coloration, however, are scarce to the present. Here, we used single-color (blue, yellow and white) of discus for comparative metabolomics analysis of pigmentary and structural coloration. Statistical model showed significant separations between three colors of discus, suggesting the distinct metabolite profiles of discus pigmentary and structural colors. More astaxanthin was found in yellow discus, which might be the cause of yellow pigmentary color. Moreover, docosahexaenoic acid, arachidonic acid, linoleic acid, eicosapentaenoic acid, 1-stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine, dodecanoic acid and myristic acid related to lipid metabolism and pathways of ABC transporters and biosynthesis of unsaturated fatty acids were more enriched in yellow discus. More adenine, xanthine and hypoxanthine were enriched in blue discus, which might account for the blue structural color. Moreover, amino acids associated with purine biosynthesis, e.g., L-alanine and L-isoleucine, were reduced but pathways of protein digestion and absorption, aminoacyl-tRNA biosynthesis, purine metabolism and glycine, serine and threonine metabolism were enriched in blue discus. Overall, these results reveal specific chromophores and related metabolic pathways involved in pigmentary and structural coloration of discus fish. SIGNIFICANCE: We detected specific chromophores present in skin of pigmentary and structural colors of discus and revealed potential metabolic pathways associated with body coloration. These results contribute to our understanding of the mechanism of body color formation in discus fish.
Collapse
Affiliation(s)
- Bo-Tian Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Yu Ji
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao-Ran Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Zhao Z, Xiong Y, Zhang C, Jia YJ, Qiu DK, Wang GX, Zhu B. Optimization of the efficacy of a SWCNTs-based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2020; 106:190-196. [PMID: 32755683 DOI: 10.1016/j.fsi.2020.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) cause a high mortality disease which brings substantial economic losses to the mandarin fish culture industry in China. This study was aimed at optimizing the efficacy of a SWCNTs-based immersion subunit vaccine (SWCNTs-M-MCP) which as a promising vaccine against ISKNV. Mandarin fish were vaccinated by immersion, then we designed an orthogonal experiment to optimize different parameters affecting vaccination such as immune duration of bath immunization, immune dose, and fish density when immunized. Our results showed that the highest relative percent survival (86.7%) was found in the group 6 with 8 h of immune duration, 20 mg/L of immune dose, and 8 fish per liter of fish density. And other immune responses (serum antibody production, enzyme activities, and immune-related genes expression) also demonstrated similar results. In addition, the expression of IRF-I in group 6 (8 h, 20 mg/L, 8 fish per liter) was significant extents, and about 16-folds increases were obtained than the control group at 21 d post-vaccination. And the highest specific antibody response was significantly increased (more than 4-folds) than control group which was found in group 6. The optimum immune duration, immune dose, and fish density of SWCNTs-M-MCP were 8 h, 20 mg/L, 8 fish per liter, respectively. Importantly, our results also showed that immune duration had the greatest effect on the immune response of our vaccine, followed by immune dose. The study reported herein provides a helpful reference for the effective use of vaccine in fish farming industry.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yan Xiong
- Yunnan Institute of Fishery Sciences Research, Kunmin, 650224, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Kumar R, Ghosh M, Kumar S, Prasad M. Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol 2020; 11:1152. [PMID: 32582094 PMCID: PMC7286130 DOI: 10.3389/fmicb.2020.01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, India
| | - Sandeep Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
14
|
Rang J, He H, Yuan S, Tang J, Liu Z, Xia Z, Khan TA, Hu S, Yu Z, Hu Y, Sun Y, Huang W, Ding X, Xia L. Deciphering the Metabolic Pathway Difference Between Saccharopolyspora pogona and Saccharopolyspora spinosa by Comparative Proteomics and Metabonomics. Front Microbiol 2020; 11:396. [PMID: 32256469 PMCID: PMC7093602 DOI: 10.3389/fmicb.2020.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Butenyl-spinosyn, a secondary metabolite produced by Saccharopolyspora pogona, exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type S. pogona limit its broad application and metabolic engineering. Here, we showed that S. pogona exhibited increased glucose consumption ability and growth rate compared with S. spinosa, but the production of butenyl-spinosyn was much lower than that of spinosyn. To further elucidate the metabolic mechanism of these different phenotypes, we performed a comparative proteomic and metabolomic study on S. pogona and S. spinosa to identify the change in the abundance levels of proteins and metabolites. We found that the abundance of most proteins and metabolites associated with glucose transport, fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine and pyrimidine metabolism, and target product biosynthesis in S. pogona was higher than that in S. spinosa. However, the overall abundance of proteins involved in butenyl-spinosyn biosynthesis was much lower than that of the high-abundance protein chaperonin GroEL, such as the enzymes related to rhamnose synthesis. We speculated that these protein and metabolite abundance changes may be directly responsible for the above phenotypic changes in S. pogona and S. spinosa, especially affecting butenyl-spinosyn biosynthesis. Further studies revealed that the over-expression of the rhamnose synthetic genes and methionine adenosyltransferase gene could effectively improve the production of butenyl-spinosyn by 2.69- and 3.03-fold, respectively, confirming the reliability of this conjecture. This work presents the first comparative proteomics and metabolomics study of S. pogona and S. spinosa, providing new insights into the novel links of phenotypic change and metabolic difference between two strains. The result will be valuable in designing strategies to promote the biosynthesis of butenyl-spinosyn by metabolic engineering.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tahir Ali Khan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weitao Huang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|