1
|
Ma Z, Wang W, Xiong Y, Long Y, Shao Q, Wu L, Wang J, Tian P, Khan AU, Yang W, Dong Y, Yin H, Tang H, Dai J, Tahir M, Liu X, He L. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large-Scale Fabrication, and Performance Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400179. [PMID: 39031523 DOI: 10.1002/smll.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Indexed: 07/22/2024]
Abstract
With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.
Collapse
Affiliation(s)
- Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yibo Xiong
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yihao Long
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qi Shao
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Leixin Wu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiangwang Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Tian
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Arif Ullah Khan
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenhao Yang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yixiao Dong
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Tahir
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Liu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin, 644005, P. R. China
| |
Collapse
|
2
|
Abstract
The boom in ultra-thin electronic devices and the growing need for humanization greatly facilitated the development of wearable flexible micro-devices. But the technology to deposit electrode material on flexible substrate is still in its infancy. Herein, the flexible symmetric micro-supercapacitors made of carbon nanotubes (CNTs) on commercial printing paper as electrode materials were fabricated by combining tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique on a large scale. The electrochemical performance of the obtained micro-supercapacitors can be controlled and tuned by simple choosing different models of tetrahedral preparatory to obtain CNTs film of different thicknesses. As expected, the micro-supercapacitor based on CNTs film can deliver an areal capacitance up to 4.56 mF/cm2 at current of 0.02 mA. Even if, micro-supercapacitor undergoes continuous 10000 cycles, the performance of device can still remain nearly 100%. The as-demonstrated tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique provide new perspective for preparing microelectronics in an economical way. The paper electrode appended by CNTs achieves steerable areal capacitance, showing broad application prospect in fabricating asymmetric micro-supercapacitor with flexible planar configurations in the future.
Collapse
Affiliation(s)
- Wen-xiang Cheng
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230039, China
| | - Tong-tong Jiang
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230039, China
| | - Hai-bo Hu
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230039, China
| |
Collapse
|
4
|
Progress and Perspectives in Designing Flexible Microsupercapacitors. MICROMACHINES 2021; 12:mi12111305. [PMID: 34832717 PMCID: PMC8621582 DOI: 10.3390/mi12111305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Miniaturized flexible microsupercapacitors (MSCs) that can be integrated into self-powered sensing systems, detecting networks, and implantable devices have shown great potential to perfect the stand-alone functional units owing to the robust security, continuously improved energy density, inherence high power density, and long service life. This review summarizes the recent progress made in the development of flexible MSCs and their application in integrated wearable electronics. To meet requirements for the scalable fabrication, minimization design, and easy integration of the flexible MSC, the typical assembled technologies consist of ink printing, photolithography, screen printing, laser etching, etc., are provided. Then the guidelines regarding the electrochemical performance improvement of the flexible MSC by materials design, devices construction, and electrolyte optimization are considered. The integrated prototypes of flexible MSC-powered systems, such as self-driven photodetection systems, wearable sweat monitoring units are also discussed. Finally, the future challenges and perspectives of flexible MSC are envisioned.
Collapse
|