1
|
Duque-Prata A, Serpa C, Caridade PJSB. Theoretical Evaluation of Fluorinated Resazurin Derivatives for In Vivo Applications. Molecules 2024; 29:1507. [PMID: 38611787 PMCID: PMC11013821 DOI: 10.3390/molecules29071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, molecular adjustments are necessary to align optical properties with the near-infrared imaging window while preserving redox properties. This study delves into the theoretical characterisation of a set of fluorinated resazurin derivatives proposed by Kachur et al., 2015 examining the influence of fluorination on structural and electrochemical properties. Assuming that the conductor-like polarisable continuum model mimics the solvent effect, the density functional level of theory combining M06-2X/6-311G* was used to calculate the redox potentials. Furthermore, (TD-)DFT calculations were performed with PBE0/def2-TZVP to evaluate nucleophilic characteristics, transition states for fluorination, relative energies, and fluorescence spectra. With the aim of exploring the potential of resazurin fluorinated derivatives as redox sensors tailored for in vivo applications, acid-base properties and partition coefficients were calculated. The theoretical characterisation has demonstrated its potential for designing novel molecules based on fundamental principles.
Collapse
Affiliation(s)
| | | | - Pedro J. S. B. Caridade
- CQC-IMS, Department of Chemistry, University of Coimbra, 304-535 Coimbra, Portugal; (A.D.-P.); (C.S.)
| |
Collapse
|
2
|
Zhu L, Tillquist N, Scatolin G, Gately R, Kawaida M, Reiter A, Reed S, Zinn S, Govoni K, Jiang Z. Maternal restricted- and over- feeding during gestation perturb offspring sperm epigenome in sheep. Reproduction 2023; 166:311-322. [PMID: 37647207 PMCID: PMC10962644 DOI: 10.1530/rep-23-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
In brief Inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. This study shows that maternal restricted - and over- nutrition during gestation do not affect semen characteristics in F1 male offspring but alters offspring sperm sncRNA profiles and DNA methylome in sheep. Abstract There is a growing body of evidence that inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. However, little is known about the effects of maternal nutrition during gestation on male offspring reproduction. Here, using a sheep model of maternal restricted - and over - nutrition (60 or 140% of the National Research Council requirements) during gestation, we found that maternal restricted - and over - nutrition do not affect semen characteristics (i.e. volume, sperm concentration, pH, sperm motility, sperm morphology) or scrotal circumference in male F1 offspring. However, using small RNA sequencing analysis, we demonstrated that both restricted - and over - nutrition during gestation induced marked changes in composition and expression of sperm small noncoding RNAs (sncRNAs) subpopulations including in male F1 offspring. Whole-genome bisulfite sequencing analysis further identified specific genomic loci where poor maternal nutrition resulted in alterations in DNA methylation. These findings indicate that maternal restricted - and over - nutrition during gestation induce epigenetic modifications in sperm of F1 offspring sperm in sheep, which may contribute to environmentally influenced phenotypes in ruminants.
Collapse
Affiliation(s)
- Linkai Zhu
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| | - Nicole Tillquist
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Giovanna Scatolin
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| | - Rachael Gately
- Department of Ambulatory Medicine and Theriogenology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536
| | - Mia Kawaida
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Amanda Reiter
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Steven Zinn
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Kristen Govoni
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| |
Collapse
|
3
|
Chen CH, Tsao YT, Yeh PT, Liao YH, Lee YT, Liao WT, Wang YC, Shen CF, Cheng CM. Detection of Microorganisms in Body Fluids via MTT-PMS Assay. Diagnostics (Basel) 2021; 12:46. [PMID: 35054213 PMCID: PMC8774610 DOI: 10.3390/diagnostics12010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022] Open
Abstract
Early detection of microorganisms is essential for the management of infectious diseases. However, this is challenging, as traditional culture methods are labor-intensive and time-consuming. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-phenazine methosulfate (MTT-PMS) assay has been used to evaluate the metabolic activity in live cells and can thus be used for detecting living microorganisms. With the addition of NaOH and Tris-EDTA, the same approach can be accelerated (within 15 min) and used for the quick detection of common bacterial pathogens. The assay results can be evaluated colorimetrically or semi-quantitatively. Here, the quick detection by MTT-PMS assay was further investigated. The assay had a detection limit of approximately 104 CFU/mL. In clinical evaluations, we used the MTT-PMS assay to detect clinical samples and bacteriuria (>105 CFU/mL). The negative predictive value of the MTT-PMS assay for determining bacteriuria was 79.59% but was 100% when the interference of abnormal blood was excluded. Thus, the MTT-PMS assay might be a potential "rule-out" tool for bacterial detection in clinical samples, at a cost of approximately USD 1 per test. Owing to its low cost, rapid results, and easy-to-use characteristics, the MTT-PMS assay may be a potential tool for microorganism detection.
Collapse
Affiliation(s)
- Cheng-Han Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Ting Tsao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wan-Ting Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Yung-Chih Wang
- National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| |
Collapse
|
4
|
Oeschger TM, Erickson DC. Visible colorimetric growth indicators of Neisseria gonorrhoeae for low-cost diagnostic applications. PLoS One 2021; 16:e0252961. [PMID: 34138928 PMCID: PMC8211239 DOI: 10.1371/journal.pone.0252961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
N. gonorrhoeae is one of the most pressing antibiotic resistant threats of our time and low-cost diagnostics that can easily identify antibiotic resistance are desperately needed. However, N. gonorrhoeae responds so uniquely to growth conditions that it cannot be assumed gonorrhea will respond to common microbiological methods used for other pathogenic organisms. In this paper, we explore visual colorimetric indicators of N. gonorrhoeae growth that can be seen without a microscope or spectrophotometer. We evaluate growth media, pH indicators, resazurin-based dyes, and tetrazolium-based dyes for their use in simple colorimetric system. Overall, we identified Graver Wade media as the best at supporting robust gonococcal growth while also providing the least background when analyzing results of colorimetric tests. XTT, a tetrazolium-based dye, proved to show to brightest color change over time and not negatively impact the natural growth of N. gonorrhoeae. However, other dyes including PrestoBlue, MTT, and NBT are less expensive than XTT and work well when added after bacterial growth has already occurred. By identifying the specific use cases of these dyes, this research lays the groundwork for future development of a color-based antibiotic susceptibility low-cost test for N. gonorrhoeae.
Collapse
Affiliation(s)
- Taylor Mae Oeschger
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - David Carl Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liao YH, Muthuramalingam K, Tung KH, Chuan HH, Liang KY, Hsu CP, Cheng CM. Portable Device for Quick Detection of Viable Bacteria in Water. MICROMACHINES 2020; 11:mi11121079. [PMID: 33291693 PMCID: PMC7761948 DOI: 10.3390/mi11121079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
(1) Background: Access to clean water is a very important factor for human life. However, pathogenic microorganisms in drinking water often cause diseases, and convenient/inexpensive testing methods are urgently needed. (2) Methods: The reagent contains 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and phenazine methosulfate (PMS) and can react with succinate dehydrogenase within bacterial cell membranes to produce visible purple crystals. The colorimetric change of the reagent after reaction can be measured by a sensor (AS7262). (3) Results: Compared with traditional methods, our device is simple to operate and can provide rapid (i.e., 5 min) semi-quantitative results regarding the concentration of bacteria within a test sample. (4) Conclusions: This easy-to-use device, which employs MTT-PMS reagents, can be regarded as a potential and portable tool for rapid water quality determination.
Collapse
Affiliation(s)
- Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Karthickraj Muthuramalingam
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
| | - Kuo-Hao Tung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital, Chu-Tung Branch, Hsinchu 300, Taiwan;
| | - Ko-Yuan Liang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan;
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chen-Peng Hsu
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
- Correspondence: (C.-P.H.); (C.-M.C.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
- Correspondence: (C.-P.H.); (C.-M.C.)
| |
Collapse
|
6
|
Editorial for the Special Issue on Point-of-Care Devices. MICROMACHINES 2020; 11:mi11040389. [PMID: 32283603 PMCID: PMC7231321 DOI: 10.3390/mi11040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022]
|