1
|
Hari K, Ryan T, Bhattacharya S, Guerin S. Molded, Solid-State Biomolecular Assemblies with Programmable Electromechanical Properties. PHYSICAL REVIEW LETTERS 2024; 133:137001. [PMID: 39392999 DOI: 10.1103/physrevlett.133.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 10/13/2024]
Abstract
Piezoelectric and ferroelectric technologies are currently dominated by perovskite-based ceramics, not only due to their impressive figures of merit, but due to their versatility in size and shape. This allows the dimensions of, for example, lead zirconium titanate and potassium sodium niobate, to be tailored to the needs of thousands of applications across the automotive, medical device, and consumer electronics industries. In this Letter, we significantly advance the performance and customization of biomolecular crystal (nontoxic, biocompatible amino acids, viz., trans-4-hydroxy-L-proline, L-alanine, hydrates of L-arginine and L-asparagine, and γ-glycine) assemblies by growing them as molded, substrate-free piezoelectric elements. This methodology allows for electromechanical properties to be embedded in these assemblies by fine-tuning the chemistry of the biomolecules and thus the functional properties of the single crystal space group. Here, we report the piezoelectric, mechanical, thermal, and structural properties of these amino acid-based polycrystalline actuators. This versatile, low-cost, low-temperature growth method opens up the path to phase in biomolecular piezoelectrics as high-performance, eco-friendly alternatives to ceramics.
Collapse
|
2
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
3
|
Mariello M, Rosenthal JD, Cecchetti F, Gao M, Skrivervik AK, Leterrier Y, Lacour SP. Wireless, battery-free, and real-time monitoring of water permeation across thin-film encapsulation. Nat Commun 2024; 15:7443. [PMID: 39198382 PMCID: PMC11358307 DOI: 10.1038/s41467-024-51247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Long-term bioelectronic implants require stable, hermetic encapsulation. Water and ion ingress are challenging to quantify, especially in miniaturized microsystems and over time. We propose a wireless and battery-free flexible platform leveraging backscatter communication and magnesium (Mg)-based microsensors. Water permeation through the encapsulation induces corrosion of the Mg resistive sensor thereby shifting the oscillation frequency of the sensing circuit. Experimental in vitro and in-tissue characterization provides information on the operation of the platform and demonstrates the robustness and accuracy of this promising method, revealing its significance for in-situ real-time monitoring of implanted bioelectronics.
Collapse
Affiliation(s)
- Massimo Mariello
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - James Daniel Rosenthal
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | | | - Mingxiang Gao
- Microwaves and Antennas Group (MAG), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anja K Skrivervik
- Microwaves and Antennas Group (MAG), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
4
|
Alam AI, Rahman MH, Zia A, Lowry N, Chakraborty P, Hassan MR, Khoda B. In-situ particle analysis with heterogeneous background: a machine learning approach. Sci Rep 2024; 14:10609. [PMID: 38719876 PMCID: PMC11079076 DOI: 10.1038/s41598-024-59558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
We propose a novel framework that combines state-of-the-art deep learning approaches with pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds common in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often fall short in accurately detecting particles against the intricate and varied backgrounds characteristic of heterogeneous particle-substrate (HPS) interfaces in manufacturing. To address this, we've developed a flexible framework designed to detect particles in diverse environments and input types. Our modular framework hinges on model selection and AI-guided particle detection as its core, with preprocessing and postprocessing as integral components, creating a four-step process. This system is versatile, allowing for various preprocessing, AI model selections, and post-processing strategies. We demonstrate this with an entrainment-based particle delivery method, transferring various particles onto substrates that mimic the HPS interface. By altering particle and substrate properties (e.g., material type, size, roughness, shape) and process parameters (e.g., capillary number) during particle entrainment, we capture images under different ambient lighting conditions, introducing a range of HPS background complexities. In the preprocessing phase, we apply image enhancement and sharpening techniques to improve detection accuracy. Specifically, image enhancement adjusts the dynamic range and histogram, while sharpening increases contrast by combining the high pass filter output with the base image. We introduce an image classifier model (based on the type of heterogeneity), employing Transfer Learning with MobileNet as a Model Selector, to identify the most appropriate AI model (i.e., YOLO model) for analyzing each specific image, thereby enhancing detection accuracy across particle-substrate variations. Following image classification based on heterogeneity, the relevant YOLO model is employed for particle identification, with a distinct YOLO model generated for each heterogeneity type, improving overall classification performance. In the post-processing phase, domain knowledge is used to minimize false positives. Our analysis indicates that the AI-guided framework maintains consistent precision and recall across various HPS conditions, with the harmonic mean of these metrics comparable to those of individual AI model outcomes. This tool shows potential for advancing in-situ process monitoring across multiple manufacturing operations, including high-density powder-based 3D printing, powder metallurgy, extreme environment coatings, particle categorization, and semiconductor manufacturing.
Collapse
Affiliation(s)
- Adeeb Ibne Alam
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States
| | - Md Hafizur Rahman
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Akhter Zia
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States
| | - Nate Lowry
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Prabuddha Chakraborty
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Md Rafiul Hassan
- Computer Science, University of Maine at Presque Isle, Presque Isle, ME, 04769, USA
| | - Bashir Khoda
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States.
| |
Collapse
|
5
|
Han JK, Wong VK, Lim DBK, Christopher Subhodayam PT, Luo P, Yao K. Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating. SENSORS (BASEL, SWITZERLAND) 2023; 23:4696. [PMID: 37430609 DOI: 10.3390/s23104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Conformability, lightweight, consistency and low cost due to batch fabrication in situ on host structures are the attractive advantages of ultrasonic transducers made of piezoelectric polymer coatings for structural health monitoring (SHM). However, knowledge about the environmental impacts of piezoelectric polymer ultrasonic transducers is lacking, limiting their widespread use for SHM in industries. The purpose of this work is to evaluate whether direct-write transducers (DWTs) fabricated from piezoelectric polymer coatings can withstand various natural environmental impacts. The ultrasonic signals of the DWTs and properties of the piezoelectric polymer coatings fabricated in situ on the test coupons were evaluated during and after exposure to various environmental conditions, including high and low temperatures, icing, rain, humidity, and the salt fog test. Our experimental results and analyses showed that it is promising for the DWTs made of piezoelectric P(VDF-TrFE) polymer coating with an appropriate protective layer to pass various operational conditions according to US standards.
Collapse
Affiliation(s)
- Jin Kyu Han
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Voon-Kean Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - David Boon Kiang Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Percis Teena Christopher Subhodayam
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Kui Yao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
6
|
Mariello M, Kim K, Wu K, Lacour SP, Leterrier Y. Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201129. [PMID: 35353928 DOI: 10.1002/adma.202201129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronic implantable systems (BIS) targeting biomedical and clinical research should combine long-term performance and biointegration in vivo. Here, recent advances in novel encapsulations to protect flexible versions of such systems from the surrounding biological environment are reviewed, focusing on material strategies and synthesis techniques. Considerable effort is put on thin-film encapsulation (TFE), and specifically organic-inorganic multilayer architectures as a flexible and conformal alternative to conventional rigid cans. TFE is in direct contact with the biological medium and thus must exhibit not only biocompatibility, inertness, and hermeticity but also mechanical robustness, conformability, and compatibility with the manufacturing of microfabricated devices. Quantitative characterization methods of the barrier and mechanical performance of the TFE are reviewed with a particular emphasis on water-vapor transmission rate through electrical, optical, or electrochemical principles. The integrability and functionalization of TFE into functional bioelectronic interfaces are also discussed. TFE represents a must-have component for the next-generation bioelectronic implants with diagnostic or therapeutic functions in human healthcare and precision medicine.
Collapse
Affiliation(s)
- Massimo Mariello
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Kangling Wu
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
7
|
Shovon SMN, Alam A, Gramlich W, Khoda B. Micro-particle entrainment from density mismatched liquid carrier system. Sci Rep 2022; 12:9806. [PMID: 35697827 PMCID: PMC9192781 DOI: 10.1038/s41598-022-14162-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Micro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated. The LCS solution was prepared and optimized using a polymer binder and an evaporating solvent. The inorganic particles were dispersed in the LCS by stirring at the just suspending speed to maintain the pseudo suspension characteristics for the heterogeneous mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported at room temperature. Two coating regimes are observed (i) heterogeneous coating where particle clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the substrate. 'Zero' particle entrainment was not observed even at a low capillary number of the mixture, which can be attributed to the presence of the binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is [Formula: see text] for 6.5% binder and [Formula: see text] for 10.5% binder, which are smaller than previously reported in literature. Furthermore, the transferred particle matrices closely follow the analytical expression (modified LLD) of density matching suspension which demonstrate that the density mismatch effect can be neutralized with the stirring energy. The findings of this research will help to understand this high-volume solid transfer technique and develop novel manufacturing processes.
Collapse
Affiliation(s)
- S M Naser Shovon
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA
| | - Adeeb Alam
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA
| | - William Gramlich
- Department of Chemistry, The University of Maine, Orono, ME, USA
| | - Bashir Khoda
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA.
| |
Collapse
|
8
|
Antimicrobial Photodynamic Coatings Reduce the Microbial Burden on Environmental Surfaces in Public Transportation—A Field Study in Buses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042325. [PMID: 35206511 PMCID: PMC8872155 DOI: 10.3390/ijerph19042325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Abstract
Millions of people use public transportation daily worldwide and frequently touch surfaces, thereby producing a reservoir of microorganisms on surfaces increasing the risk of transmission. Constant occupation makes sufficient cleaning difficult to achieve. Thus, an autonomous, permanent, antimicrobial coating (AMC) could keep down the microbial burden on such surfaces. A photodynamic AMC was applied to frequently touched surfaces in buses. The microbial burden (colony forming units, cfu) was determined weekly and compared to equivalent surfaces in buses without AMC (references). The microbial burden ranged from 0–209 cfu/cm2 on references and from 0–54 cfu/cm2 on AMC. The means were 13.4 ± 29.6 cfu/cm2 on references and 4.5 ± 8.4 cfu/cm2 on AMC (p < 0.001). The difference in microbial burden on AMC and references was almost constant throughout the study. Considering a hygiene benchmark of 5 cfu/cm2, the data yield an absolute risk reduction of 22.6% and a relative risk reduction of 50.7%. In conclusion, photodynamic AMC kept down the microbial burden, reducing the risk of transmission of microorganisms. AMC permanently and autonomously contributes to hygienic conditions on surfaces in public transportation. Photodynamic AMC therefore are suitable for reducing the microbial load and closing hygiene gaps in public transportation.
Collapse
|
9
|
Influence of Double-Pulse Electrodeposition Parameters on the Performance of Nickel/Nanodiamond Composite Coatings. COATINGS 2021. [DOI: 10.3390/coatings11091068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, using 45# carbon steel as the substrate, a first experimental analysis was carried out on the polarisation behaviour of different component wattage plating solutions in order to determine the reasonable content of nanodiamond particles in a nickel/nanodiamond composite plating solution. Secondly, the effect of double-pulse forward and reverse duty cycle and reverse working time on the performance of nickel/nanodiamond composite plating was then investigated by testing the thickness, hardness and surface roughness of the composite plating and observing the surface micromorphology. The experimental results show that, when the content of nanodiamond particles in the plating solution is 5 g/L, the anti-pulse working time, forward and reverse pulse duty cycle of the double-pulse plating parameters are 20 ms, 0.3 and 0.2, respectively, and the composite plating layer prepared by double pulse has good comprehensive performance. This research work provides technical support for the optimisation of process parameters for the preparation of nickel/nanodiamond composite coatings by double-pulse electrodeposition.
Collapse
|
10
|
Mariello M, Qualtieri A, Mele G, De Vittorio M. Metal-Free Multilayer Hybrid PENG Based on Soft Electrospun/-Sprayed Membranes with Cardanol Additive for Harvesting Energy from Surgical Face Masks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20606-20621. [PMID: 33896167 DOI: 10.1021/acsami.1c01740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Disposable surgical face masks are usually used by medical/nurse staff but the current Covid-19 pandemic has caused their massive use by many people. Being worn closely attached to the people's face, they are continuously subjected to routine movements, i.e., facial expressions, breathing, and talking. These motional forces represent an unusual source of wasted mechanical energy that can be rather harvested by electromechanical transducers and exploited to power mask-integrated sensors. Typically, piezoelectric and triboelectric nanogenerators are exploited to this aim; however, most of the current devices are too thick or wide, not really conformable, and affected by humidity, which make them hardly embeddable in a mask, in contact with skin. Different from recent attempts to fabricate smart energy-harvesting cloth masks, in this work, a wearable energy harvester is rather enclosed in the mask and can be reused and not disposed. The device is a metal-free hybrid piezoelectric nanogenerator (hPENG) based on soft biocompatible materials. In particular, poly(vinylidene fluoride) (PVDF) membranes in the pure form and with a biobased plasticizer (cardanol oil, CA) are electrospun onto a laser-ablated polyimide flexible substrate attached on a skin-conformable elastomeric blend of poly(dimethylsiloxane) (PDMS) and Ecoflex. The multilayer structure of the device harnesses the piezoelectricity of the PVDF nanofibers and the friction triboelectric effects. The ultrasensitive mechanoelectrical transduction properties of the composite device are determined by the strong electrostatic behavior of the membranes and the plasticization effect of cardanol. In addition, encapsulation based on PVDF, PDMS, CA, and parylene C is used, allowing the hPENG to exhibit optimal reliability and resistance against the wet and warm atmosphere around the face mask. The proposed device reveals potential applications for the future development of smart masks with coupled energy-harvesting devices, allowing to use them not only for anti-infective protection but also to supply sensors or active antibacterial/viral devices.
Collapse
Affiliation(s)
- Massimo Mariello
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, 73100 Lecce, Italy
| | - Antonio Qualtieri
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano (Lecce), Italy
| | - Giuseppe Mele
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, 73100 Lecce, Italy
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
11
|
Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C. ENERGIES 2020. [DOI: 10.3390/en13071625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Triboelectric nanogenerators (TENGs) have recently become a powerful technology for energy harvesting and self-powered sensor networks. One of their main advantages is the possibility to employ a wide range of materials, especially for fabricating inexpensive and easy-to-use devices. This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator which could be employed for driving future low power consumption wearable devices. The proposed TENG is a single-electrode device operating in contact-separation mode for applications in low-frequency energy harvesting from intermittent tapping loads involving the human body, such as finger or hand tapping. The novelty of the device lies in the choice of materials: it is based on a combination of a polysiloxane elastomer and a poly (para-xylylene). In particular, the TENG is composed, sequentially, of a poly (dimethylsiloxane) (PDMS) substrate which was made porous and rough with a steam-curing step; then, a metallization layer with titanium and gold, deposited on the PDMS surface with an optimal substrate–electrode adhesion. Finally, the metallized structure was coated with a thin film of parylene C serving as friction layer. This material provides excellent conformability and high charge-retaining capability, playing a crucial role in the triboelectric process; it also makes the device suitable for employment in harsh, wet environments owing to its inertness and barrier properties. Preliminary performance tests were conducted by measuring the open-circuit voltage and power density under finger tapping (~2 N) at ~5 Hz. The device exhibited a peak-to-peak voltage of 1.6 V and power density peak of 2.24 mW/m2 at ~0.4 MΩ. The proposed TENG demonstrated ease of process, simplicity, cost-effectiveness, and flexibility.
Collapse
|