1
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Costantini F, Lovecchio N, Nandimandalam M, Manglli A, Faggioli F, Biasin M, Manetti C, Roversi PF, Nascetti A, de Cesare G, Caputo D. Biomolecular Monitoring Tool Based on Lab-on-Chip for Virus Detection. BIOSENSORS 2023; 13:544. [PMID: 37232905 PMCID: PMC10216243 DOI: 10.3390/bios13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications.
Collapse
Affiliation(s)
- Francesca Costantini
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Nicola Lovecchio
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Manasa Nandimandalam
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Ariana Manglli
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Francesco Faggioli
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | | | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy
| | - Giampiero de Cesare
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Domenico Caputo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| |
Collapse
|
3
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Zhang Y, Hu X, Wang Q, Zhang Y. Recent advances in microchip-based methods for the detection of pathogenic bacteria. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, Darabi MA, Zhu Y, Lee J, Diltemiz SE, Montazerian H, Sangabathuni S, Tavafoghi M, Jucaud V, Sun W, Kim H, Ahadian S, Khademhosseini A. Micro and Nanoscale Technologies for Diagnosis of Viral Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100692. [PMID: 34310048 PMCID: PMC8420309 DOI: 10.1002/smll.202100692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Viral infection is one of the leading causes of mortality worldwide. The growth of globalization significantly increases the risk of virus spreading, making it a global threat to future public health. In particular, the ongoing coronavirus disease 2019 (COVID-19) pandemic outbreak emphasizes the importance of devices and methods for rapid, sensitive, and cost-effective diagnosis of viral infections in the early stages by which their quick and global spread can be controlled. Micro and nanoscale technologies have attracted tremendous attention in recent years for a variety of medical and biological applications, especially in developing diagnostic platforms for rapid and accurate detection of viral diseases. This review addresses advances of microneedles, microchip-based integrated platforms, and nano- and microparticles for sampling, sample processing, enrichment, amplification, and detection of viral particles and antigens related to the diagnosis of viral diseases. Additionally, methods for the fabrication of microchip-based devices and commercially used devices are described. Finally, challenges and prospects on the development of micro and nanotechnologies for the early diagnosis of viral diseases are highlighted.
Collapse
Affiliation(s)
- Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahboobeh Mahmoodi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringYazd BranchIslamic Azad UniversityYazd8915813135Iran
| | | | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Sibel Emir Diltemiz
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of ChemistryFaculty of ScienceEskisehir Technical UniversityEskisehir26470Turkey
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | | | - Maryam Tavafoghi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
6
|
Zhang Y, Hu X, Wang Q. Review of microchip analytical methods for the determination of pathogenic Escherichia coli. Talanta 2021; 232:122410. [PMID: 34074400 DOI: 10.1016/j.talanta.2021.122410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections remain the principal cause of mortality worldwide, making the detection of pathogenic bacteria highly important, especially Escherichia coli (E. coli). Current E. coli detection methods are labour-intensive, time-consuming, or require expensive instrumentation, making it critical to develop new strategies that are sensitive and specific. Microchips are an automated analytical technique used to analyse food based on their separation efficiency and low analyte consumption, which make them the preferred method to detect pathogenic bacteria. This review presents an overview of microchip-based analytical methods for analysing E. coli, which were published in recent years. Specifically, this review focuses on current research based on microchips for the detection of E. coli and reviews the limitations of microchip-based methods and future perspectives for the analysis of pathogenic bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
7
|
Liu AQ, Nguyen NT, Zhang Y. Editorial for the Special Issue of 10th Anniversary of Micromachines. MICROMACHINES 2020; 12:mi12010009. [PMID: 33374203 PMCID: PMC7823402 DOI: 10.3390/mi12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD 4111, Australia;
| | - Yi Zhang
- School of Mechanical & Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence:
| |
Collapse
|
8
|
Gorgannezhad L, Sreejith KR, Christie M, Jin J, Ooi CH, Katouli M, Stratton H, Nguyen NT. Core-Shell Beads as Microreactors for Phylogrouping of E. coli Strains. MICROMACHINES 2020; 11:mi11080761. [PMID: 32784703 PMCID: PMC7464145 DOI: 10.3390/mi11080761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Multiplex polymerase chain reaction (PCR) is an effective tool for simultaneous detection of target genes. Nevertheless, their use has been restricted due to the intrinsic interference between primer pairs. Performing several single PCRs in an array format instead of a multiplex PCR is a simple way to overcome this obstacle. However, there are still major technical challenges in designing a new generation of single PCR microreactors with a small sample volume, rapid thermal cycling, and no evaporation during amplification. We report a simple and robust core-shell bead array for a series of single amplifications. Four core-shell beads with a polymer coating and PCR mixture were synthesized using liquid marble formation and subsequent photo polymerization. Each bead can detect one target gene. We constructed a customised system for thermal cycling of these core-shell beads. Phylogrouping of the E. coli strains was carried out based on the fluorescent signal of the core-shell beads. This platform can be a promising alternative for multiplex nucleic acid analyses due to its simplicity and high throughput. The platform reported here also reduces the cycling time and avoids evaporation as well as contamination of the sample during the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.J.); (C.H.O.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (M.C.); (H.S.)
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.J.); (C.H.O.)
| | - Melody Christie
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (M.C.); (H.S.)
| | - Jing Jin
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.J.); (C.H.O.)
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.J.); (C.H.O.)
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia;
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (M.C.); (H.S.)
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.J.); (C.H.O.)
- Correspondence:
| |
Collapse
|