1
|
Shellaiah M, Lin WL, Raghunath P, Sun KW, Lin MC. Investigation on broadband emission of two-dimensional melamine lead iodide perovskite (2D-C 3H 8N 6PbI 4): An experimental and theoretical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123186. [PMID: 37499471 DOI: 10.1016/j.saa.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Novel two-dimensional melamine lead iodide perovskite (2D-C3H8N6PbI4) is synthesized to investigate its crystallinity, optical band gap and broadband emission properties and to make comparisons with 2D-C3H8N6PbCl4/2D-C3H8N6PbBr4 perovskites. Both experimental and density functional theory (DFT) interrogations on 2D-C3H8N6PbX4 (X = Cl, Br and I) are conducted. The crystal structure, morphology and percentile of Pb and halide elements are confirmed using scanning electron microscope (SEM), and energy dispersive spectrum (EDS), powder/single crystal X-ray diffraction (PXRD/SXRD), DFT and X-ray crystallography simulations. The optical band gaps of 2D-C3H8N6PbX4 perovskites are determined from the Tauc plot fitting of absorbance and DFT studies. Distinct broadband emission of 2D-C3H8N6PbX4 perovskites between 300 and 800 nm is observed, which can be fitted with multiple Gaussian distributions. The fittings of broad PL spectra from 2D-C3H8N6PbCl4/2D-C3H8N6PbBr4 perovskites confirm the involvement of both Dexter energy transfer from melamine cation and self-trapped excitons (STEs). However, the broadband emission of 2D-C3H8N6PbI4 is attributed only to the Dexter energy transfer from melamine cation and the absence of STEs is attributed to the larger lattice deformation of 2D-C3H8N6PbI4. Moreover, the involvement of spin-orbit coupling (SOC) in the energy transfer is clarified to attest that the broadband emission of 2D-C3H8N6PbI4 is distinct among its halide family.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Li Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Putikam Raghunath
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Ming-Chang Lin
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Lin PH, Nien HH, Li BR. Wearable Microfluidics for Continuous Assay. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:181-203. [PMID: 36888989 DOI: 10.1146/annurev-anchem-091322-082930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers. An efficient use of space in one small device is a promising resolution to increase the functions of wearable devices. Through integration of a microfluidic system into wearable devices, embedding complicated structures in one design becomes possible and can enable multifunction analyses within a limited device volume. This article reviews the reported microfluidic wearable devices, introduces applications to different biofluids, discusses characteristics of the design strategies and sensing principles, and highlights the attractive configurations of each device. This review seeks to provide a detailed summary of recent advanced microfluidic wearable devices. The overview of advanced key components is the basis for the development of future microfluidic wearable devices.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Hua Nien
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
3
|
A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer's disease, toxicity, and ADME studies. Comput Biol Med 2022; 146:105514. [DOI: 10.1016/j.compbiomed.2022.105514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 01/18/2023]
|
4
|
Duraisamy SS, Vijayakumar N, Rajendran J, Venkatesan A, Kartha B, Kandasamy SP, Nicoletti M, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M. Facile synthesis of silver nanoparticles using the Simarouba glauca leaf extract and their impact on biological outcomes: A novel perspective for nano-drug development. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ahumada JC, Soto JP, Alemán C, Torras J. Synthesis and characterization of a new benzobisoxazole/thiophene derivative polymer and the effect of the substituent on the push/pull properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan Carlos Ahumada
- Departamento de Química Universidad Técnica Federico Santa María Valparaíso Chile
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est (EEBE) Barcelona Spain
| | - Juan Pablo Soto
- Laboratorio de Polímeros, Instituto de Química Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Valparaíso Chile
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est (EEBE) Barcelona Spain
| | - Juan Torras
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est (EEBE) Barcelona Spain
| |
Collapse
|
6
|
Park S, Choi J, Mondal S, Vo TMT, Pham VH, Lee H, Nam SY, Kim CS, Oh J. The impact of Cu(II) ions doping in nanostructured hydroxyapatite powder: A finite element modelling study for physico-mechanical and biological property evaluation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.103405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Şahin S, Dege N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Şahin S, Dege N. A newly synthesized small molecule: the evaluation against Alzheimer's Disease by in silico drug design and computational structure analysis methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Lam SE, Mat Nawi SN, Abdul Sani SF, Khandaker MU, Bradley DA. Raman and photoluminescence spectroscopy analysis of gamma irradiated human hair. Sci Rep 2021; 11:7939. [PMID: 33846448 PMCID: PMC8041883 DOI: 10.1038/s41598-021-86942-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Preliminary study has been made of black human hair, carbon concentration of some 53%, a model in examining the potential of hair of the human head in retrospective and emergency biodosimetry applications, also offering effective atomic number near to that of water. The hair samples were exposed to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{60}$$\end{document}60Co gamma rays, delivering doses from 0 to 200 Gy. Structural alterations were observed, use being made of Raman and photoluminescence (PL) spectroscopy. Most prominent among the features observed in the first-order Raman spectra are the D and G peaks, appearing at 1370 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\pm }} 18\,{\hbox {cm}}^{-1}$$\end{document}±18cm-1 and 1589 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\pm }} 11\,{\hbox {cm}}^{-1}$$\end{document}±11cm-1 respectively, the intensity ratio \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{I}}}_{{{D}}}{{/}}{{{I}}}_{{{G}}}$$\end{document}ID/IG indicating dose-dependent defects generation and annealing of structural alterations. The wavelengths of the PL absorption and emission peaks are found to be centred at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$592.3 \pm 12.5$$\end{document}592.3±12.5 nm and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1077.4 \pm 7.3$$\end{document}1077.4±7.3 nm, respectively. The hair samples mean band gap energy (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{E}}}_{{{g}}}$$\end{document}Eg) post-irradiation was found to be \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2.10 \pm 0.04$$\end{document}2.10±0.04 eV, of the order of a semiconductor and approximately two times the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{E}}}_{{{g}}}$$\end{document}Eg of other carbon-rich materials reported via the same methodology.
Collapse
Affiliation(s)
- Siok Ee Lam
- Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Siti Nurasiah Mat Nawi
- Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | | | - Mayeen Uddin Khandaker
- Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - David Andrew Bradley
- Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.,Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
10
|
Inkjet Printing of Synthesized Melanin Nanoparticles as a Biocompatible Matrix for Pharmacologic Agents. NANOMATERIALS 2020; 10:nano10091840. [PMID: 32942599 PMCID: PMC7558123 DOI: 10.3390/nano10091840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Melanin is a natural biopigment that is produced by melanocytes and can be found in most living organisms. The unique physical and chemical properties of melanin render it potentially useful for numerous applications, particularly those in which a biocompatible functional material is required. Herein, we introduce one important technology in which melanin can be utilized: a drug delivery system in terms of a biocompatible matrix. However, extracting melanin from different biological sources is costly and time-consuming and introduces variabilities in terms of chemical structure, properties, and functions. Hence, a functionally reproducible system is hard to achieve using biologically extracted melanin. Here we report the synthesis of melanin nanoparticles of controlled uniform sizes and chemical characteristics. The optical, chemical, and structural characteristics of synthesized nanoparticles were characterized by optical confocal photoluminescence (PL) imaging, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zeta potentiometry. The melanin nanoparticles have 100 nm size and a narrow size distribution. The advantage of a nanoparticle structure is its enhanced surface-to-volume ratio compared to bulk pigments, which is important for applications in which controlling the microscopic surface area is essential. Using the inkjet printing technique, we developed melanin thin films with minimum ink waste and loaded them with methylene blue (our representative drug) to test the drug-loading ability of the melanin nanoparticles. Inkjet printing allowed us to create smooth uniform films with precise deposition and minimum ink-waste. The spectroscopic analysis confirmed the attachment of the "drug" onto the melanin nanoparticles as a matrix. Hence, our data identify melanin as a material system to integrate into drug release applications.
Collapse
|