1
|
Guo Q, Liu Z, Yang Z, Jiang Y, Sun Y, Xu J, Zhao W, Wang W, Wang W, Ren Q, Shu C. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:285-331. [DOI: 10.1016/j.jmapro.2024.07.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
3
|
Belén F, Gravina AN, Pistonesi MF, Ruso JM, García NA, Prado FD, Messina PV. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5843-5855. [PMID: 35048694 DOI: 10.1021/acsami.1c22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.
Collapse
Affiliation(s)
- Federico Belén
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - A Noel Gravina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Marcelo Fabián Pistonesi
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicolás A García
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Fernando Daniel Prado
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Paula V Messina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| |
Collapse
|
4
|
Vijay R, Mendhi J, Prasad K, Xiao Y, MacLeod J, Ostrikov K(K, Zhou Y. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2977. [PMID: 34835740 PMCID: PMC8625459 DOI: 10.3390/nano11112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Dental implants are used broadly in dental clinics as the most natural-looking restoration option for replacing missing or highly diseased teeth. However, dental implant failure is a crucial issue for diabetic patients in need of dentition restoration, particularly when a lack of osseointegration and immunoregulatory incompetency occur during the healing phase, resulting in infection and fibrous encapsulation. Bio-inspired or biomimetic materials, which can mimic the characteristics of natural elements, are being investigated for use in the implant industry. This review discusses different biomimetic dental implants in terms of structural changes that enable antibacterial properties, drug delivery, immunomodulation, and osseointegration. We subsequently summarize the modification of dental implants for diabetes patients utilizing carbon nanomaterials, which have been recently found to improve the characteristics of biomimetic dental implants, including through antibacterial and anti-inflammatory capabilities, and by offering drug delivery properties that are essential for the success of dental implants.
Collapse
Affiliation(s)
- Renjini Vijay
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Jayanti Mendhi
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Karthika Prasad
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2600, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya (Ken) Ostrikov
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. COATINGS 2021. [DOI: 10.3390/coatings11060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the growing aging population of the world, and as a result of the increasing need for dental implants and prostheses, the use of titanium and its alloys as implant materials has spread rapidly. Although titanium and its alloys are considered the best metallic materials for biomedical applications, the need for innovative technologies is necessary due to the sensitivity of medical applications and to eliminate any potentially harmful reactions, enhancing the implant-to-bone integration and preventing infection. In this regard, the implant’s surface as the substrate for any reaction is of crucial importance, and it is accurately addressed in this review paper. For constructing this review paper, an internet search was performed on the web of science with these keywords: surface modification techniques, titanium implant, biomedical applications, surface functionalization, etc. Numerous recent papers about titanium and its alloys were selected and reviewed, except for the section on forthcoming modern implants, in which extended research was performed. This review paper aimed to briefly introduce the necessary surface characteristics for biomedical applications and the numerous surface treatment techniques. Specific emphasis was given to micro/nano-structured topographies, biocompatibility, osteogenesis, and bactericidal effects. Additionally, gradient, multi-scale, and hierarchical surfaces with multifunctional properties were discussed. Finally, special attention was paid to modern implants and forthcoming surface modification strategies such as four-dimensional printing, metamaterials, and metasurfaces. This review paper, including traditional and novel surface modification strategies, will pave the way toward designing the next generation of more efficient implants.
Collapse
|
6
|
Wan H, He T, Ju X, Jiang K, Zhang C, Shen X, Yu H, Lu Y, Li J, Chen T. Rapid Fabrication of Superhydrophobic Surface on Magnesium Alloy with Excellent Corrosion-Resistant and Self-Cleaning Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hongri Wan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Tiantian He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Xinzhe Ju
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Kaile Jiang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Cheng Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Xiran Shen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Haoren Yu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Yunlong Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Jiangnan Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| | - Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221-018, P. R. China
| |
Collapse
|
7
|
He Q, Xu Z, Li A, Wang J, Zhang J, Zhang Y. Study on hydrophobic properties of fluororubber prepared by template method under high temperature conditions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|