1
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
2
|
Hsu MC, Mansouri M, Ahamed NNN, Larson SM, Joshi IM, Ahmed A, Borkholder DA, Abhyankar VV. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Sci Rep 2022; 12:10769. [PMID: 35750792 PMCID: PMC9232624 DOI: 10.1038/s41598-022-15087-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Well-defined fluid flows are the hallmark feature of microfluidic culture systems and enable precise control over biophysical and biochemical cues at the cellular scale. Microfluidic flow control is generally achieved using displacement-based (e.g., syringe or peristaltic pumps) or pressure-controlled techniques that provide numerous perfusion options, including constant, ramped, and pulsed flows. However, it can be challenging to integrate these large form-factor devices and accompanying peripherals into incubators or other confined environments. In addition, microfluidic culture studies are primarily carried out under constant perfusion conditions and more complex flow capabilities are often unused. Thus, there is a need for a simplified flow control platform that provides standard perfusion capabilities and can be easily integrated into incubated environments. To this end, we introduce a tunable, 3D printed micro pressure regulator (µPR) and show that it can provide robust flow control capabilities when combined with a battery-powered miniature air pump to support microfluidic applications. We detail the design and fabrication of the µPR and: (i) demonstrate a tunable outlet pressure range relevant for microfluidic applications (1-10 kPa), (ii) highlight dynamic control capabilities in a microfluidic network, (iii) and maintain human umbilical vein endothelial cells (HUVECs) in a multi-compartment culture device under continuous perfusion conditions. We anticipate that our 3D printed fabrication approach and open-access designs will enable customized µPRs that can support a broad range of microfluidic applications.
Collapse
Affiliation(s)
- Meng-Chun Hsu
- Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Nuzhet N N Ahamed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen M Larson
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
3
|
Journey of organ on a chip technology and its role in future healthcare scenario. APPLIED SURFACE SCIENCE ADVANCES 2022; 9. [PMCID: PMC9000345 DOI: 10.1016/j.apsadv.2022.100246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Organ on a chip refers to microengineered biomimetic system which reflects structural and functional characteristics of human tissue. It involves biomaterial technology, cell biology and engineering combined together in a miniaturized platform. Several models using different organs such as lungs on a chip, liver on a chip, kidney on a chip, heart on a chip, intestine on a chip and skin on a chip have been successfully developed. Food and Drug administration (FDA) has also shown confidence in this technology and has partnered with industries/institutes which are working with this technology. In this review, the concepts and applications of Organ on a chip model in different scientific domains including disease model development, drug screening, toxicology, pathogenesis study, efficacy testing and virology is discussed. It is envisaged that amalgamation of various organs on chip modules into a unified body on chip device is of utmost importance for diagnosis and treatment, especially considering the complications due to the ongoing COVID-19 pandemic. It is expected that the market demand for developing organ on chip devices to skyrocket in the near future.
Collapse
|
4
|
Advances in microfluidics devices and its applications in personalized medicines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:191-201. [PMID: 35033284 DOI: 10.1016/bs.pmbts.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.
Collapse
|
5
|
Nikelshparg EI, Baizhumanov AA, Bochkova ZV, Novikov SM, Yakubovsky DI, Arsenin AV, Volkov VS, Goodilin EA, Semenova AA, Sosnovtseva O, Maksimov GV, Brazhe NA. Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. BIOSENSORS 2022; 12:32. [PMID: 35049660 PMCID: PMC8773528 DOI: 10.3390/bios12010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics. We applied plasmonic SERS nanosensors to assess changes in the properties of erythrocytes under normotensive and hypertensive conditions in the animal model. We found that spontaneous hypertension in rats leads (i) to a decrease in the erythrocyte plasma membrane fluidity and (ii) to a decrease in the mobility of the heme of the membrane-bound hemoglobin. We identified SERS parameters that can be used to detect pathological changes in the plasma membrane and submembrane region of erythrocytes.
Collapse
Affiliation(s)
- Evelina I. Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Adil A. Baizhumanov
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Zhanna V. Bochkova
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Eugene A. Goodilin
- Faculty of Materials Sciences, Moscow State University, 119991 Moscow, Russia; (E.A.G.); (A.A.S.)
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Anna A. Semenova
- Faculty of Materials Sciences, Moscow State University, 119991 Moscow, Russia; (E.A.G.); (A.A.S.)
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Georgy V. Maksimov
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
- Department of Physical Material Engineering, Federal State Autonomous Educational Institution of Higher Education “National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Nadezda A. Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| |
Collapse
|
6
|
Atabaki AH, Montazeri A, Rafii-Tabar H, Sasanpour P. Determination of the optimal location of samples on quartz tuning fork-based biosensors: a computational study. Biomed Phys Eng Express 2021; 7:065024. [PMID: 34521074 DOI: 10.1088/2057-1976/ac26a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In view of efficiency, simple operation, and affordable cost and disposability, quartz tuning fork systems form good candidates for mechanical-based biosensors in point of care applications. Based on the geometrical structure, the frequency response of the tuning fork- based sensors is dependent on the location of absorbed samples. In order to have the maximum efficiency and sensitivity, the optimized condition of sample loading on the fork structures should be considered. In this regard, here, we have determined the optimized sample location to be on the prongs of the quartz tuning fork by calculating the frequency response of the quartz tuning fork using the finite element method. From an application point of view, we have obtained an agreement between the calculational method and the experimental excitation technique of the structure. The results from our study show that by using an appropriate location for the sample, the quartz tuning fork could be exploited with high sensitivity.
Collapse
Affiliation(s)
- Amir Hossein Atabaki
- Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences School of Medicine, Velenjak, Tehran, Tehran, 1985717443, Iran (the Islamic Republic of)
| | - Abbas Montazeri
- Materials Science and Engineering, KN Toosi University of Technology, Vanak Suare, Tehran, Tehran, 19697, Iran (the Islamic Republic of)
| | - Hashem Rafii-Tabar
- Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences School of Medicine, Velenjak, Tehran, Tehran, 1985717443, Iran (the Islamic Republic of)
| | - Pezhman Sasanpour
- Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences School of Medicine, Velenjak, Tehran, Tehran, 1985717443, Iran (the Islamic Republic of)
| |
Collapse
|
7
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|