1
|
Nan J, Cao HX, Park JO, Choi E, Kang B. Tunable Acoustic Tweezer System for Precise Three-Dimensional Particle Manipulation. MICROMACHINES 2024; 15:1240. [PMID: 39459114 PMCID: PMC11509511 DOI: 10.3390/mi15101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
This study introduces a tunable acoustic tweezer system designed for precise three-dimensional particle trapping and manipulation. The system utilizes a dual-liquid-layer acoustic lens, which enables the dynamic control of the focal length through the adjustable curvature of a latex membrane. This tunability is essential for generating the acoustic forces necessary for effective manipulation of particles, particularly along the direction of acoustic wave propagation (z-axis). Experiments conducted with spherical particles as small as 1.5 mm in diameter demonstrated the system's capability for stable trapping and manipulation. Performance was rigorously evaluated through both z-axis and 3D manipulation tests. In the z-axis experiments, the system achieved a manipulation range of 33.4-53.4 mm, with a root-mean-square error and standard deviation of 0.044 ± 0.045 mm, which highlights its precision. Further, the 3D manipulation experiments showed that particles could be accurately guided along complex paths, including multilayer rectangular and helical trajectories, with minimal deviation. A visual feedback-based particle navigation system significantly enhanced positional accuracy, reducing errors relative to open-loop control. These results confirm that the tunable acoustic tweezer system is a robust tool for applications requiring precise control of particles with diameter of 1.5 mm in three-dimensional environments. Considering its ability to dynamically adjust the focal point and maintain stable trapping, this system is well suited for tasks demanding high precision, such as targeted particle delivery and other applications involving advanced material manipulation.
Collapse
Affiliation(s)
- Jiyun Nan
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
- Korea Institute of Medical Microrobotics, Gwangju 61000, Republic of Korea; (H.X.C.); (J.-O.P.)
| | - Hiep Xuan Cao
- Korea Institute of Medical Microrobotics, Gwangju 61000, Republic of Korea; (H.X.C.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61000, Republic of Korea; (H.X.C.); (J.-O.P.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
- Korea Institute of Medical Microrobotics, Gwangju 61000, Republic of Korea; (H.X.C.); (J.-O.P.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61000, Republic of Korea; (H.X.C.); (J.-O.P.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Cao HX, Nguyen VD, Park JO, Choi E, Kang B. Acoustic Actuators for the Manipulation of Micro/Nanorobots: State-of-the-Art and Future Outlooks. MICROMACHINES 2024; 15:186. [PMID: 38398914 PMCID: PMC10890471 DOI: 10.3390/mi15020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Compared to other actuating methods, acoustic actuators offer the distinctive capability of the contactless manipulation of small objects, such as microscale and nanoscale robots. Furthermore, they have the ability to penetrate the skin, allowing for the trapping and manipulation of micro/nanorobots that carry therapeutic agents in diverse media. In this review, we summarize the current progress in using acoustic actuators for the manipulation of micro/nanorobots used in various biomedical applications. First, we introduce the actuating method of using acoustic waves to manipulate objects, including the principle of operation and different types of acoustic actuators that are usually employed. Then, applications involving manipulating different types of devices are reviewed, including bubble-based microrobots, bubble-free robots, biohybrid microrobots, and nanorobots. Finally, we discuss the challenges and future perspectives for the development of the field.
Collapse
Affiliation(s)
- Hiep Xuan Cao
- Robot Research Initiative, Chonnam National University, Gwangju 61186, Republic of Korea; (H.X.C.); (E.C.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea;
| | - Van Du Nguyen
- Robot Research Initiative, Chonnam National University, Gwangju 61186, Republic of Korea; (H.X.C.); (E.C.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea;
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea;
| | - Eunpyo Choi
- Robot Research Initiative, Chonnam National University, Gwangju 61186, Republic of Korea; (H.X.C.); (E.C.)
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byungjeon Kang
- Robot Research Initiative, Chonnam National University, Gwangju 61186, Republic of Korea; (H.X.C.); (E.C.)
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Cao HX, Jung D, Lee HS, Nguyen VD, Choi E, Kim CS, Park JO, Kang B. Fabrication, Acoustic Characterization and Phase Reference-Based Calibration Method for a Single-Sided Multi-Channel Ultrasonic Actuator. MICROMACHINES 2022; 13:2182. [PMID: 36557481 PMCID: PMC9782305 DOI: 10.3390/mi13122182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The ultrasonic actuator can be used in medical applications because it is label-free, biocompatible, and has a demonstrated history of safe operation. Therefore, there is an increasing interest in using an ultrasonic actuator in the non-contact manipulation of micromachines in various materials and sizes for therapeutic applications. This research aims to design, fabricate, and characterize a single-sided transducer array with 56 channels operating at 500 kHz, which provide benefits in the penetration of tissue. The fabricated transducer is calibrated using a phase reference calibration method to reduce position misalignment and phase discrepancies caused by acoustic interaction. The acoustic fields generated by the transducer array are measured in a 300 mm × 300 mm × 300 mm container filled with de-ionized water. A hydrophone is used to measure the far field in each transducer array element, and the 3D holographic pattern is analyzed based on the scanned acoustic pressure fields. Next, the phase reference calibration is applied to each transducer in the ultrasonic actuator. As a result, the homogeneity of the acoustic pressure fields surrounding the foci area is improved, and the maximum pressure is also increased in the twin trap. Finally, we demonstrate the capability to trap and manipulate micromachines with acoustic power by generating a twin trap using both optical camera and ultrasound imaging systems in a water medium. This work not only provides a comprehensive study on acoustic actuators but also inspires the next generation to use acoustics in medical applications.
Collapse
Affiliation(s)
- Hiep Xuan Cao
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
| | - Daewon Jung
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
| | - Han-Sol Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Go G, Yoo A, Nguyen KT, Nan M, Darmawan BA, Zheng S, Kang B, Kim CS, Bang D, Lee S, Kim KP, Kang SS, Shim KM, Kim SE, Bang S, Kim DH, Park JO, Choi E. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. SCIENCE ADVANCES 2022; 8:eabq8545. [PMID: 36399561 PMCID: PMC9674283 DOI: 10.1126/sciadv.abq8545] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/30/2022] [Indexed: 05/28/2023]
Abstract
Microrobots that can be precisely guided to target lesions have been studied for in vivo medical applications. However, existing microrobots have challenges in vivo such as biocompatibility, biodegradability, actuation module, and intra- and postoperative imaging. This study reports microrobots visualized with real-time x-ray and magnetic resonance imaging (MRI) that can be magnetically guided to tumor feeding vessels for transcatheter liver chemoembolization in vivo. The microrobots, composed of a hydrogel-enveloped porous structure and magnetic nanoparticles, enable targeted delivery of therapeutic and imaging agents via magnetic guidance from the actuation module under real-time x-ray imaging. In addition, the microrobots can be tracked using MRI as postoperative imaging and then slowly degrade over time. The in vivo validation of microrobot system-mediated chemoembolization was demonstrated in a rat liver with a tumor model. The proposed microrobot provides an advanced medical robotic platform that can overcome the limitations of existing microrobots and current liver chemoembolization.
Collapse
Affiliation(s)
- Gwangjun Go
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Minghui Nan
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Shirong Zheng
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 34931, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 34931, Korea
| | - Seonmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Se Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
5
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
6
|
Cao HX, Nguyen VD, Jung D, Choi E, Kim CS, Park JO, Kang B. Acoustically Driven Cell-Based Microrobots for Targeted Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14102143. [PMID: 36297578 PMCID: PMC9609374 DOI: 10.3390/pharmaceutics14102143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 μm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.
Collapse
Affiliation(s)
- Hiep Xuan Cao
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Daewon Jung
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| |
Collapse
|
7
|
Lin L, Dang H, Zhu R, Liu Y, You H. Effects of Side Profile on Acoustic Streaming by Oscillating Microstructures in Channel. MICROMACHINES 2022; 13:mi13091439. [PMID: 36144062 PMCID: PMC9504731 DOI: 10.3390/mi13091439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
In microchannels, microstructure-induced acoustic streaming can be achieved at low frequencies, providing simple platforms for biomedicine and microfluidic manipulation. Nowadays, microstructures are generally fabricated by photolithography or soft photolithography. Existing studies mainly focused on the projection plane, while ignoring the side profile including microstructure's sidewall and channel's upper wall. Based on the perturbation theory, the article focuses on the effect of microstructure's sidewall errors caused by machining and the viscous dissipation of upper wall on the streaming. We discovered that the side profile parameters, particularly the gap (gap g between the top of the structure and the upper wall of the channel), have a significant impact on the maximum velocity, mode, and effective area of the streaming.To broaden the applicability, we investigated boundary layer thickness parameters including frequency and viscosity. Under different thickness parameters, the effects of side profile parameters on the streaming are similar. But the maximum streaming velocity is proportional to the frequency squared and inversely proportional to the viscosity. Besides, the ratio factor θ of the maximum streaming velocity to the vibration velocity is affected by the side profile parameter gap g and sidewall profile angle α.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Haojie Dang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxin Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Ying Liu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
8
|
Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14071490. [PMID: 35890382 PMCID: PMC9317593 DOI: 10.3390/pharmaceutics14071490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Acoustic tweezers provide unique capabilities in medical applications, such as contactless manipulation of small objects (e.g., cells, compounds or living things), from nanometer-sized extracellular vesicles to centimeter-scale structures. Additionally, they are capable of being transmitted through the skin to trap and manipulate drug carriers in various media. However, these capabilities are hindered by the limitation of controllable degrees of freedom (DoFs) or are limited maneuverability. In this study, we explore the potential application of acoustical tweezers by presenting a five-DoF contactless manipulation acoustic system (AcoMan). The system has 30 ultrasound transducers (UTs) with single-side arrangement that generates active traveling waves to control the position and orientation of a fully untethered nanocarrier clusters (NCs) in a spherical workspace in water capable of three DoFs translation and two DoFs rotation. In this method, we use a phase modulation algorithm to independently control the phase signal for 30 UTs and manipulate the NCs’ positions. Phase modulation and switching power supply for each UT are employed to rotate the NCs in the horizontal plane and control the amplitude of power supply to each UT to rotate the NCs in the vertical plane. The feasibility of the method is demonstrated by in vitro and ex vivo experiments using porcine ribs. A significant portion of this study could advance the therapeutic application such a system as targeted drug delivery.
Collapse
|
9
|
Kilikevičius S, Liutkauskienė K, Uldinskas E, El Banna R, Fedaravičius A. Omnidirectional Manipulation of Microparticles on a Platform Subjected to Circular Motion Applying Dynamic Dry Friction Control. MICROMACHINES 2022; 13:mi13050711. [PMID: 35630178 PMCID: PMC9146381 DOI: 10.3390/mi13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Currently used planar manipulation methods that utilize oscillating surfaces are usually based on asymmetries of time, kinematic, wave, or power types. This paper proposes a method for omnidirectional manipulation of microparticles on a platform subjected to circular motion, where the motion of the particle is achieved and controlled through the asymmetry created by dynamic friction control. The range of angles at which microparticles can be directed, and the average velocity were considered figures of merit. To determine the intrinsic parameters of the system that define the direction and velocity of the particles, a nondimensional mathematical model of the proposed method was developed, and modeling of the manipulation process was carried out. The modeling has shown that it is possible to direct the particle omnidirectionally at any angle over the full 2π range by changing the phase shift between the function governing the circular motion and the dry friction control function. The shape of the trajectory and the average velocity of the particle depend mainly on the width of the dry friction control function. An experimental investigation of omnidirectional manipulation was carried out by implementing the method of dynamic dry friction control. The experiments verified that the asymmetry created by dynamic dry friction control is technically feasible and can be applied for the omnidirectional manipulation of microparticles. The experimental results were consistent with the modeling results and qualitatively confirmed the influence of the control parameters on the motion characteristics predicted by the modeling. The study enriches the classical theories of particle motion on oscillating rigid plates, and it is relevant for the industries that implement various tasks related to assembling, handling, feeding, transporting, or manipulating microparticles.
Collapse
|
10
|
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. MICROMACHINES 2022; 13:481. [PMID: 35334771 PMCID: PMC8949854 DOI: 10.3390/mi13030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices.
Collapse
Affiliation(s)
- Yaxuan Xiao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Jinhua Zhang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Bin Fang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Xiong Zhao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Nanjing Hao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| |
Collapse
|
11
|
Mohanty S, Fidder RJ, Matos PM, Heunis CM, Kaya M, Blanken N, Misra S. SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:988-997. [PMID: 34990355 DOI: 10.1109/tuffc.2022.3140745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation.
Collapse
|
12
|
Kilikevičius S, Fedaravičius A. Vibrational Transportation on a Platform Subjected to Sinusoidal Displacement Cycles Employing Dry Friction Control. SENSORS 2021; 21:s21217280. [PMID: 34770585 PMCID: PMC8587818 DOI: 10.3390/s21217280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Currently used vibrational transportation methods are usually based on asymmetries of geometric, kinematic, wave, or time types. This paper investigates the vibrational transportation of objects on a platform that is subjected to sinusoidal displacement cycles, employing periodic dynamic dry friction control. This manner of dry friction control creates an asymmetry, which is necessary to move the object. The theoretical investigation on functional capabilities and transportation regimes was carried out using a developed parametric mathematical model, and the control parameters that determine the transportation characteristics such as velocity and direction were defined. To test the functional capabilities of the proposed method, an experimental setup was developed, and experiments were carried out. The results of the presented research indicate that the proposed method ensures smooth control of the transportation velocity in a wide range and allows it to change the direction of motion. Moreover, the proposed method offers other new functional capabilities, such as a capability to move individual objects on the same platform in opposite directions and at different velocities at the same time by imposing different friction control parameters on different regions of the platform or on different objects. In addition, objects can be subjected to translation and rotation at the same time by imposing different friction control parameters on different regions of the platform. The presented research extends the classical theory of vibrational transportation and has a practical value for industries that operate manufacturing systems performing tasks such as handling and transportation, positioning, feeding, sorting, aligning, or assembling.
Collapse
|
13
|
Nonprehensile Manipulation of Parts on a Horizontal Circularly Oscillating Platform with Dynamic Dry Friction Control. SENSORS 2021; 21:s21165581. [PMID: 34451021 PMCID: PMC8402286 DOI: 10.3390/s21165581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
This paper presents a novel method for nonprehensile manipulation of parts on a circularly oscillating platform when the effective coefficient of dry friction between the part and the platform is being dynamically controlled. Theoretical and experimental analyses have been performed to validate the proposed method and to determine the control parameters that define the characteristics of the part’s motion. A mathematical model of the manipulation process with dynamic dry friction control was developed and solved. The modeling showed that by changing the phase shift between the function for dynamic dry friction control and the function defining the circular motion of the platform, the part can be moved in any direction as the angle of displacement can be controlled in a full range from 0 to 2π. The nature of the trajectory and the mean displacement velocity of the part mainly depend on the width of the rectangular function for dynamic dry friction control. To verify the theoretical findings, an experimental setup was developed, and experiments of manipulation were carried out. The experimental results qualitatively confirmed the theoretical findings. The presented analysis enriches the classical theories of nonprehensile manipulation on oscillating platforms, and the presented findings are relevant for mechatronics, robotics, mechanics, electronics, medical, and other industries.
Collapse
|