1
|
Georgopoulou A, Filippi M, Stefani L, Drescher F, Balciunaite A, Scherberich A, Katzschmann R, Clemens F. Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics. Adv Healthc Mater 2024; 13:e2400051. [PMID: 38666593 DOI: 10.1002/adhm.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Bionic tissues offer an exciting frontier in biomedical research by integrating biological cells with artificial electronics, such as sensors. One critical hurdle is the development of artificial electronics that can mechanically harmonize with biological tissues, ensuring a robust interface for effective strain transfer and local deformation sensing. In this study, a highly tissue-integrative, soft mechanical sensor fabricated from a composite piezoresistive hydrogel. The composite not only exhibits exceptional mechanical properties, with elongation at the point of fracture reaching up to 680%, but also maintains excellent biocompatibility across multiple cell types. Furthermore, the material exhibits bioadhesive qualities, facilitating stable cell adhesion to its surface. A unique advantage of the formulation is the compatibility with 3D bioprinting, an essential technique for fabricating stable interfaces. A multimaterial sensorized 3D bionic construct is successfully bioprinted, and it is compared to structures produced via hydrogel casting. In contrast to cast constructs, the bioprinted ones display a high (87%) cell viability, preserve differentiation ability, and structural integrity of the sensor-tissue interface throughout the tissue development duration of 10 d. With easy fabrication and effective soft tissue integration, this composite holds significant promise for various biomedical applications, including implantable electronics and organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Lisa Stefani
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Felix Drescher
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Aiste Balciunaite
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Robert Katzschmann
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Frank Clemens
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| |
Collapse
|
2
|
Sirolli S, Guarnera D, Ricotti L, Cafarelli A. Triggerable Patches for Medical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310110. [PMID: 38860756 DOI: 10.1002/adma.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Medical patches have garnered increasing attention in recent decades for several diagnostic and therapeutic applications. Advancements in material science, manufacturing technologies, and bioengineering have significantly widened their functionalities, rendering them highly versatile platforms for wearable and implantable applications. Of particular interest are triggerable patches designed for drug delivery and tissue regeneration purposes, whose action can be controlled by an external signal. Stimuli-responsive patches are particularly appealing as they may enable a high level of temporal and spatial control over the therapy, allowing high therapeutic precision and the possibility to adjust the treatment according to specific clinical and personal needs. This review aims to provide a comprehensive overview of the existing extensive literature on triggerable patches, emphasizing their potential for diverse applications and highlighting the strengths and weaknesses of different triggering stimuli. Additionally, the current open challenges related to the design and use of efficient triggerable patches, such as tuning their mechanical and adhesive properties, ensuring an acceptable trade-off between smartness and biocompatibility, endowing them with portability and autonomy, accurately controlling their responsiveness to the triggering stimulus and maximizing their therapeutic efficacy, are reviewed.
Collapse
Affiliation(s)
- Sofia Sirolli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
3
|
Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol 2024; 266:131281. [PMID: 38641503 DOI: 10.1016/j.ijbiomac.2024.131281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
As an emerging new manufacturing technology, Three-dimensional (3D) bioprinting provides the potential for the biomimetic construction of multifaceted and intricate architectures of functional integument, particularly functional biomimetic dermal structures inclusive of cutaneous appendages. Although the tissue-engineered skin with complete biological activity and physiological functions is still cannot be manufactured, it is believed that with the advances in matrix materials, molding process, and biotechnology, a new generation of physiologically active skin will be born in the future. In pursuit of furnishing readers and researchers involved in relevant research to have a systematic and comprehensive understanding of 3D printed tissue-engineered skin, this paper furnishes an exegesis on the prevailing research landscape, formidable obstacles, and forthcoming trajectories within the sphere of tissue-engineered skin, including: (1) the prevalent biomaterials (collagen, chitosan, agarose, alginate, etc.) routinely employed in tissue-engineered skin, and a discerning analysis and comparison of their respective merits, demerits, and inherent characteristics; (2) the underlying principles and distinguishing attributes of various current printing methodologies utilized in tissue-engineered skin fabrication; (3) the present research status and progression in the realm of tissue-engineered biomimetic skin; (4) meticulous scrutiny and summation of the extant research underpinning tissue-engineered skin inform the identification of prevailing challenges and issues.
Collapse
Affiliation(s)
- Qinghua Wei
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China.
| | - Yalong An
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Zhao
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Tabatabaei Hosseini BS, Meadows K, Gabriel V, Hu J, Kim K. Biofabrication of Cellulose-based Hydrogels for Advanced Wound Healing: A Special Emphasis on 3D Bioprinting. Macromol Biosci 2024; 24:e2300376. [PMID: 38031512 DOI: 10.1002/mabi.202300376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Even with the current advancements in wound management, addressing most skin injuries and wounds continues to pose a significant obstacle for the healthcare industry. As a result, researchers are now focusing on creating innovative materials utilizing cellulose and its derivatives. Cellulose, the most abundant biopolymer in nature, has unique properties that make it a promising material for wound healing, such as biocompatibility, tunable physiochemical characteristics, accessibility, and low cost. 3D bioprinting technology has enabled the production of cellulose-based wound dressings with complex structures that mimic the extracellular matrix. The inclusion of bioactive molecules such as growth factors offers the ability to aid in promoting wound healing, while cellulose creates an ideal environment for controlled release of these biomolecules and moisture retention. The use of 3D bioprinted cellulose-based wound dressings has potential benefits for managing chronic wounds, burns, and painful wounds by promoting wound healing and reducing the risk of infection. This review provides an up-to-date summary of cellulose-based dressings manufactured by 3D bioprinting techniques by looking into wound healing biology, biofabrication methods, cellulose derivatives, and the existing cellulose bioinks targeted toward wound healing.
Collapse
Affiliation(s)
| | - Kieran Meadows
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Vincent Gabriel
- Calgary Firefighters Burn Treatment Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jinguang Hu
- Department of Petroleum and Chemical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
5
|
Kammona O, Tsanaktsidou E, Kiparissides C. Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings. Gels 2024; 10:147. [PMID: 38391477 PMCID: PMC10887944 DOI: 10.3390/gels10020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings. The present paper reviews recently developed 3D (bio)printed hydrogels for wound healing applications, especially focusing on the results of their in vitro and in vivo assessment. The advanced hydrogel constructs were printed using different types of bioinks (e.g., natural and/or synthetic polymers and their mixtures with biological materials) and printing methods (e.g., extrusion, digital light processing, coaxial microfluidic bioprinting, etc.) and incorporated various bioactive agents (e.g., growth factors, antibiotics, antibacterial agents, nanoparticles, etc.) and/or cells (e.g., dermal fibroblasts, keratinocytes, mesenchymal stem cells, endothelial cells, etc.).
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr Polym 2023; 321:121298. [PMID: 37739531 DOI: 10.1016/j.carbpol.2023.121298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
Chronic wounds, especially diabetic ulcers, pose a significant challenge in regenerative medicine. Cellulose derivatives offer remarkable wound management properties, such as effective absorption and retention of wound exudates, maintaining an optimal moisture environment crucial for successful chronic wound regeneration. However, conventional dressings have limited efficacy in managing and healing these types of skin lesions, driving scientists to explore innovative approaches. The emergence of 3D printing has enabled personalized dressings that meet individual patient needs, improving the healing process and patient comfort. Cellulose derivatives meet the demanding requirements for biocompatibility, printability, and biofabrication necessary for 3D printing of biologically active scaffolds. However, the potential applications of nanocellulose and cellulose derivative-based inks for wound regeneration remain largely unexplored. Thus, this review provides a comprehensive overview of recent advancements in cellulose-based inks for 3D printing of personalized wound dressings. The composition and biofabrication approaches of cellulose-based wound dressings are thoroughly discussed, including the functionalization with bioactive molecules and antibiotics for improved wound regeneration. Similarly, the in vitro and in vivo performance of these dressings is extensively examined. In summary, this review aims to highlight the exceptional advantages and diverse applications of 3D printed cellulose-based dressings in personalized wound care.
Collapse
Affiliation(s)
- Maria Pita-Vilar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
8
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
9
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
10
|
Temirel M, Dabbagh SR, Tasoglu S. Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting. J Funct Biomater 2022; 13:jfb13040225. [PMID: 36412866 PMCID: PMC9680455 DOI: 10.3390/jfb13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young’s modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | | | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
11
|
|
12
|
Del Amo C, Fernández-San Argimiro X, Cascajo-Castresana M, Perez-Valle A, Madarieta I, Olalde B, Andia I. Wound-Microenvironment Engineering through Advanced-Dressing Bioprinting. Int J Mol Sci 2022; 23:ijms23052836. [PMID: 35269978 PMCID: PMC8911091 DOI: 10.3390/ijms23052836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
In patients with comorbidities, a large number of wounds become chronic, representing an overwhelming economic burden for healthcare systems. Engineering the microenvironment is a paramount trend to activate cells and burst-healing mechanisms. The extrusion bioprinting of advanced dressings was performed with novel composite bioinks made by blending adipose decellularized extracellular matrix with plasma and human dermal fibroblasts. Rheological and microstructural assessments of the composite hydrogels supported post-printing cell viability and proliferation over time. Embedded fibroblasts expressed steady concentrations of extracellular matrix proteins, including type 1, 3 and 4 collagens and fibronectin. ELISA assessments, multiplex protein arrays and ensuing bioinformatic analyses revealed paracrine activities corresponding to wound-healing activation through the modulation of inflammation and angiogenesis. The two modalities of advanced dressings, differing in platelet number, showed differences in the release of inflammatory and angiogenic cytokines, including interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conditioned media stimulated human-dermal-cell proliferation over time. Our findings open the door to engineering the microenvironment as a strategy to enhance healing.
Collapse
Affiliation(s)
- Cristina Del Amo
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
| | - Xabier Fernández-San Argimiro
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - María Cascajo-Castresana
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Arantza Perez-Valle
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Isabel Andia
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
- Correspondence: ; Tel.: +34-60-941-9897
| |
Collapse
|
13
|
Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics 2022; 14:pharmaceutics14030485. [PMID: 35335859 PMCID: PMC8948950 DOI: 10.3390/pharmaceutics14030485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The success of wound treatment is conditioned by the combination of both suitable active ingredients and formulation. Grape seed extract (GSE), a waste by-product obtained by grape processing, is a natural source rich in many phenolic compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities and for this reason useful to be used in a wound care product. Bioadhesive polymeric patches have been realized by combining acacia gum (AG) and polyvinylpyrrolidone (PVP). Prototypes were prepared by considering different AG/PVP ratios and the most suitable in terms of mechanical and bioadhesion properties resulted in the 9.5/1.0 ratio. This patch was loaded with GSE combined with cyclic dextrin (CD) to obtain the molecular dispersion of the active ingredient in the dried formulation. The loaded patch resulted mechanically resistant and able to release GSE by a sustained mechanism reaching concentrations able to stimulate keratinocytes’ growth, to exert both antibacterial and antioxidant activities.
Collapse
|